DONATE

Publications

by Keyword: organ-on-chip

Ugarte-Orozco, MJ, Lopez-Munoz, GA, Antonio-Perez, A, Esquivel-Ortiz, KM, Ramon-Azcon, J, (2023). High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing Current Research In Biotechnology 5, 100119

In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturiza-tion, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the bioin-terface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecog-nition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip.

JTD Keywords: Biointerfaces, Biosensing, Biosensors, Cell culture monitoring, Metaplasmonic, Nanoplasmonic, Organ-on-chip, Point-of-care


Llenas, M, Paoli, R, Feiner-Gracia, N, Albertazzi, L, Samitier, J, Caballero, D, (2021). Versatile vessel-on-a-chip platform for studying key features of blood vascular tumors Bioengineering (Basel) 8, 81

Tumor vessel-on-a-chip systems have attracted the interest of the cancer research community due to their ability to accurately recapitulate the multiple dynamic events of the metastatic cascade. Vessel-on-a-chip microfluidic platforms have been less utilized for investigating the distinctive features and functional heterogeneities of tumor-derived vascular networks. In particular, vascular tumors are characterized by the massive formation of thrombi and severe bleeding, a rare and life-threatening situation for which there are yet no clear therapeutic guidelines. This is mainly due to the lack of technological platforms capable of reproducing these characteristic traits of the pathology in a simple and well-controlled manner. Herein, we report the fabrication of a versatile tumor vessel-on-a-chip platform to reproduce, investigate, and characterize the massive formation of thrombi and hemorrhage on-chip in a fast and easy manner. Despite its simplicity, this method offers multiple advantages to recapitulate the pathophysiological events of vascular tumors, and therefore, may find useful applications in the field of vascular-related diseases, while at the same time being an alternative to more complex approaches. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: in vitro model, microfluidics, organ-on-chip, vascular tumor, vessel, In vitro model, Microfluidics, Organ-on-chip, Vascular tumor, Vessel


Vera, D, García-Díaz, M, Torras, N, Alvarez, M, Villa, R, Martinez, E, (2021). Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms Acs Applied Materials & Interfaces 13, 13920-13933

Tissue barriers play a crucial role in human physiology by establishing tissue compartmentalization and regulating organ homeostasis. At the interface between the extracellular matrix (ECM) and flowing fluids, epithelial and endothelial barriers are responsible for solute and gas exchange. In the past decade, microfluidic technologies and organ-on-chip devices became popular as in vitro models able to recapitulate these biological barriers. However, in conventional microfluidic devices, cell barriers are primarily grown on hard polymeric membranes within polydimethylsiloxane (PDMS) channels that do not mimic the cell-ECM interactions nor allow the incorporation of other cellular compartments such as stromal tissue or vascular structures. To develop models that accurately account for the different cellular and acellular compartments of tissue barriers, researchers have integrated hydrogels into microfluidic setups for tissue barrier-on-chips, either as cell substrates inside the chip, or as self-contained devices. These biomaterials provide the soft mechanical properties of tissue barriers and allow the embedding of stromal cells. Combining hydrogels with microfluidics technology provides unique opportunities to better recreate in vitro the tissue barrier models including the cellular components and the functionality of the in vivo tissues. Such platforms have the potential of greatly improving the predictive capacities of the in vitro systems in applications such as drug development, or disease modeling. Nevertheless, their development is not without challenges in their microfabrication. In this review, we will discuss the recent advances driving the fabrication of hydrogel microfluidic platforms and their applications in multiple tissue barrier models.

JTD Keywords: hydrogel, microfabrication, microfluidics, organ-on-chip, tissue barrier, Hydrogel, Microfabrication, Microfluidics, Organ-on-chip, Tissue barrier


Paoli, R., Samitier, J., (2016). Mimicking the kidney: A key role in organ-on-chip development Micromachines , 7, (7), 126

Pharmaceutical drug screening and research into diseases call for significant improvement in the effectiveness of current in vitro models. Better models would reduce the likelihood of costly failures at later drug development stages, while limiting or possibly even avoiding the use of animal models. In this regard, promising advances have recently been made by the so-called "organ-on-chip" (OOC) technology. By combining cell culture with microfluidics, biomedical researchers have started to develop microengineered models of the functional units of human organs. With the capacity to mimic physiological microenvironments and vascular perfusion, OOC devices allow the reproduction of tissue- and organ-level functions. When considering drug testing, nephrotoxicity is a major cause of attrition during pre-clinical, clinical, and post-approval stages. Renal toxicity accounts for 19% of total dropouts during phase III drug evaluation-more than half the drugs abandoned because of safety concerns. Mimicking the functional unit of the kidney, namely the nephron, is therefore a crucial objective. Here we provide an extensive review of the studies focused on the development of a nephron-on-chip device.

JTD Keywords: Disease model, Drug discovery, Kidney, Nephron-on-chip, Organ-on-chip