During development, wound healing and cancer invasion, migrating cell clusters feature highly protrusive leader cells at their front. Leader cells are thought to pull and direct their cohort of followers, but whether their local action is enough to guide the entire cluster, or if a global mechanical organization is needed, remains controversial. Here we show that the effectiveness of the leader-follower organization is proportional to the asymmetry of traction and tension within cell clusters. By combining hydrogel micropatterning and optogenetic activation, we generate highly protrusive leaders at the edge of minimal cell clusters. We find that the induced leader can robustly drag one follower but not larger groups. By measuring traction forces and tension propagation in clusters of increasing size, we establish a quantitative relationship between group velocity and the asymmetry of the traction and tension profiles. Modelling motile clusters as active polar fluids, we explain this force-velocity relationship in terms of asymmetries in the active traction profile. Our results challenge the notion of autonomous leader cells, showing that collective cell migration requires global mechanical organization within the cluster. Leader cells play an important role in guiding migratory clusters in various biological processes. Now, the mechanical organization of leader and followers within a cell cluster is shown to enable collective migration.
Cells can adapt their active contractile properties to switch between dynamical migratory states and static homeostasis. Collective tissue surface tension, generated among others by the cortical contractility of single cells, can keep cell clusters compact, while a more bipolar, anisotropic contractility is predominantly used by mesenchymal cells to pull themselves into the extracellular matrix (ECM). Here, we investigate how these two contractility modes relate to cancer cell escape into the ECM. We compare multicellular spheroids from a panel of breast cancer cell lines with primary tumor explants from breast and cervical cancer patients by measuring matrix contraction and cellular spreading into ECM mimicking collagen matrices. Our results in spheroids suggest that tumor aggressiveness is associated with elevated contractile traction and reduced active tissue surface tension, allowing cancer cell escape. We show that it is not a binary switch but rather the interplay between these two contractility modes that is essential during this process. We provide further evidence in patient-derived tumor explants that these two contractility modes impact cancer cells' ability to leave cell clusters within a primary tumor. Our results indicate that cellular contractility is an essential factor during the formation of metastases and thus may be suitable as a prognostic criterion for the assessment of tumor aggressiveness.
Cookie Consent The IBEC website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos that use marketing cookies. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement.
Read our cookie policy