Fortunato, Isabela Corina, Bruckner, David B, Grosser, Steffen, Nautiyal, Rohit, Rossetti, Leone, Bosch-Padros, Miquel, Trebicka, Jonel, Roca-Cusachs, Pere, Sunyer, Raimon, Hannezo, Edouard, Trepat, Xavier, (2025). Single-cell migration along and against confined haptotactic gradientsNature Physics 21, 1638-1647
Haptotaxis is the process of directed cell migration along gradients of extracellular matrix density and is central to morphogenesis, immune responses and cancer invasion. It is commonly assumed that cells respond to these gradients by migrating directionally towards the regions of highest ligand density. In contrast with this view, here we show that cells exposed to micropatterned fibronectin gradients exhibit a wide range of complex trajectories, including directed haptotactic migration up the gradient but also linear oscillations and circles with extended periods of migration down the gradient. To explain this behaviour, we developed a biophysical model of haptotactic cell migration based on a coarse-grained molecular clutch model coupled to persistent stochastic polarity dynamics. Although initial haptotactic migration is explained by the differential friction at the front and back of the cell, the observed complex trajectories over longer timescales arise from the interplay between differential friction, persistence and physical confinement. Overall, our study reveals that confinement and persistence modulate the ability of cells to sense and respond to haptotactic cues and provides a framework for understanding how cells navigate complex environments.
During development, wound healing and cancer invasion, migrating cell clusters feature highly protrusive leader cells at their front. Leader cells are thought to pull and direct their cohort of followers, but whether their local action is enough to guide the entire cluster, or if a global mechanical organization is needed, remains controversial. Here we show that the effectiveness of the leader-follower organization is proportional to the asymmetry of traction and tension within cell clusters. By combining hydrogel micropatterning and optogenetic activation, we generate highly protrusive leaders at the edge of minimal cell clusters. We find that the induced leader can robustly drag one follower but not larger groups. By measuring traction forces and tension propagation in clusters of increasing size, we establish a quantitative relationship between group velocity and the asymmetry of the traction and tension profiles. Modelling motile clusters as active polar fluids, we explain this force-velocity relationship in terms of asymmetries in the active traction profile. Our results challenge the notion of autonomous leader cells, showing that collective cell migration requires global mechanical organization within the cluster. Leader cells play an important role in guiding migratory clusters in various biological processes. Now, the mechanical organization of leader and followers within a cell cluster is shown to enable collective migration.
Cells can adapt their active contractile properties to switch between dynamical migratory states and static homeostasis. Collective tissue surface tension, generated among others by the cortical contractility of single cells, can keep cell clusters compact, while a more bipolar, anisotropic contractility is predominantly used by mesenchymal cells to pull themselves into the extracellular matrix (ECM). Here, we investigate how these two contractility modes relate to cancer cell escape into the ECM. We compare multicellular spheroids from a panel of breast cancer cell lines with primary tumor explants from breast and cervical cancer patients by measuring matrix contraction and cellular spreading into ECM mimicking collagen matrices. Our results in spheroids suggest that tumor aggressiveness is associated with elevated contractile traction and reduced active tissue surface tension, allowing cancer cell escape. We show that it is not a binary switch but rather the interplay between these two contractility modes that is essential during this process. We provide further evidence in patient-derived tumor explants that these two contractility modes impact cancer cells' ability to leave cell clusters within a primary tumor. Our results indicate that cellular contractility is an essential factor during the formation of metastases and thus may be suitable as a prognostic criterion for the assessment of tumor aggressiveness.
Las cookies son importantes para ti, influyen en tu experiencia de navegación, nos ayudan a proteger tu privacidad y permiten realizar las peticiones que nos solicites a través de la web. Utilizamos cookies propias y de terceros para analizar nuestros servicios y mostrarte publicidad relacionada con tus preferencias en base a un perfil elaborado con tus hábitos de navegación. Puedes "Aceptar" o "Rechazar" aquellas cookies que no sean técnicas, así como configurar tus preferencias pulsando "Configurar Cookies". Más información, consulta nuestra Política de Cookies.
Funcionales
Siempre activo
El almacenamiento o acceso técnico es estrictamente necesario para el propósito legítimo de permitir el uso de un servicio específico solicitado explícitamente por el abonado o el usuario, o con el único fin de llevar a cabo la transmisión de una comunicación a través de una red de comunicaciones electrónicas.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.El almacenamiento o acceso técnico que se utiliza exclusivamente con fines estadísticos anónimos. Sin una orden judicial, el cumplimiento voluntario por parte de su proveedor de servicios de Internet, o registros adicionales de un tercero, la información almacenada o recuperada con este único propósito no puede utilizarse normalmente para identificarle.
Marketing
El almacenamiento o acceso técnico es necesario para crear perfiles de usuario con el fin de enviar publicidad, o para rastrear al usuario en un sitio web o en varios sitios web con fines de marketing similares.