DONATE

Publications

by Keyword: Require

Rossetti, L, Grosser, S, Abenza, JF, Valon, L, Roca-Cusachs, P, Alert, R, Trepat, X, (2024). Optogenetic generation of leader cells reveals a force-velocity relation for collective cell migration Nature Physics 20, 1659-1669

During development, wound healing and cancer invasion, migrating cell clusters feature highly protrusive leader cells at their front. Leader cells are thought to pull and direct their cohort of followers, but whether their local action is enough to guide the entire cluster, or if a global mechanical organization is needed, remains controversial. Here we show that the effectiveness of the leader-follower organization is proportional to the asymmetry of traction and tension within cell clusters. By combining hydrogel micropatterning and optogenetic activation, we generate highly protrusive leaders at the edge of minimal cell clusters. We find that the induced leader can robustly drag one follower but not larger groups. By measuring traction forces and tension propagation in clusters of increasing size, we establish a quantitative relationship between group velocity and the asymmetry of the traction and tension profiles. Modelling motile clusters as active polar fluids, we explain this force-velocity relationship in terms of asymmetries in the active traction profile. Our results challenge the notion of autonomous leader cells, showing that collective cell migration requires global mechanical organization within the cluster. Leader cells play an important role in guiding migratory clusters in various biological processes. Now, the mechanical organization of leader and followers within a cell cluster is shown to enable collective migration.

JTD Keywords: Driven, Dynamics, Guidance, Require


Monteil, VM, Wright, SC, Dyczynski, M, Kellner, MJ, Appelberg, S, Platzer, SW, Ibrahim, A, Kwon, H, Pittarokoilis, I, Mirandola, M, Michlits, G, Devignot, S, Elder, E, Abdurahman, S, Bereczky, S, Bagci, B, Youhanna, S, Aastrup, T, Lauschke, VM, Salata, C, Elaldi, N, Weber, F, Monserrat, N, Hawman, DW, Feldmann, H, Horn, M, Penninger, JM, Mirazimi, A, (2024). Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells Nature Microbiology 9, 1499-1512

Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV. Laboratory and clinical strains of Crimean-Congo haemorrhagic fever virus use LDLR to bind and enter host cells in blood vessel organoids and mice. Infection can also occur through ApoE, possibly present on virus particles.

JTD Keywords: Cholesterol, Clathrin, Entry requires, Genetics, Localization, Protei, Receptor


Avalos-Padilla, Y, Georgiev, VN, Lantero, E, Pujals, S, Verhoef, R, Borgheti-Cardoso, LN, Albertazzi, L, Dimova, R, Fernàndez-Busquets, X, (2021). The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection Plos Pathogens 17, e1009455-e1009455

Infection with Plasmodium falciparum enhances extracellular vesicle (EV) production in parasitized red blood cells (pRBCs), an important mechanism for parasite-to-parasite communication during the asexual intraerythrocytic life cycle. The endosomal sorting complex required for transport (ESCRT), and in particular the ESCRT-III sub-complex, participates in the formation of EVs in higher eukaryotes. However, RBCs have lost the majority of their organelles through the maturation process, including an important reduction in their vesicular network. Therefore, the mechanism of EV production in P. falciparum-infected RBCs remains to be elucidated. Here we demonstrate that P. falciparum possesses a functional ESCRT-III machinery activated by an alternative recruitment pathway involving the action of PfBro1 and PfVps32/PfVps60 proteins. Additionally, multivesicular body formation and membrane shedding, both reported mechanisms of EV production, were reconstituted in the membrane model of giant unilamellar vesicles using the purified recombinant proteins. Moreover, the presence of PfVps32, PfVps60 and PfBro1 in EVs purified from a pRBC culture was confirmed by super-resolution microscopy and dot blot assays. Finally, disruption of the PfVps60 gene led to a reduction in the number of the produced EVs in the KO strain and affected the distribution of other ESCRT-III components. Overall, our results increase the knowledge on the underlying molecular mechanisms during malaria pathogenesis and demonstrate that ESCRT-III P. falciparum proteins participate in EV production.

JTD Keywords: Endosomal sorting complexes required for transport, Erythrocytes, Extracellular vesicles, Humans, Malaria, falciparum, Plasmodium falciparum, Protein domains, Protein transport, Responsible consumption and production