About
The Biosensors for bioengineering group is a senior group under ICREA’s Tenure Track scheme.
Organs-on-a-chip (OOC) refers to a technology that involves creating microscale devices that mimic the structure and function of human organs. These «chips» are typically composed of living cells arranged on a microfluidic platform, allowing researchers to simulate the complex interactions and physiological responses within a specific organ.
The goal of Organs-on-a-chip (OOC) technology is to provide a more accurate and representative model of human organs compared to traditional in vitro cell cultures or animal testing. By replicating the microenvironment of organs and incorporating various cell types, organs-on-a-chip can help researchers study the effects of drugs, toxins, and diseases in a more realistic and controlled manner.
Each organ-on-a-chip device is designed to replicate the unique characteristics of a particular organ, such as the liver, pancreas or skeletal muscle. These miniature systems enable researchers to observe and analyze how different substances and conditions affect cellular behavior, tissue function, and overall organ responses. The technology holds promise for drug development, disease modeling, and toxicology studies, offering a more ethical and efficient alternative to traditional methods.
Our research on OOC development has clear goals. We want OOC platforms to be easy to use and more automation to set up cell cultures. This will help more people use them, making experiments quicker and more reliable.
We’re working on creating a simple platform for growing microtissues in 3D. This makes OOC research easier to use in the real world, moving from lab tests to practical applications. We also want to improve the user experience by making OOC platforms more friendly, compatible, and ready for use.
As OOC research moves from labs to real-world use, we want to help users deal with biological challenges. We’re developing an easy-to-use 3D tissue platform and a simple bioreactor that works with sensing technology. This helps users focus on solving biological problems, validating models, and finding potential medicines. We’re also adding sensors to make the bioreactor even more effective.
Our efforts make it easier for researchers to study how organs interact. Our second goal focuses on studying more complex disease models. This helps us understand diseases better and find ways to treat them. We believe that OOCs help in three main ways: understanding diseases, making better medicines faster, and supporting personalized research using cells from individual patients. OOCs can be a solution for studying rare diseases where other methods are not available.
Our third goal is to standardize OOC platforms, making them work together better. This involves creating common rules and standards for everyone to follow. This makes collaboration and sharing information easier.
Finally, our lab is working towards making OOCs suitable for high-throughput screening. This means making them simpler and adding good models for studying diseases. In short, we’re making OOC development more user-friendly, accessible, and technologically advanced. This simplification helps in biological research and finding new medical solutions.

Staff
Javier Ramón Azcón
Projects
NATIONAL PROJECTS | FINANCER | PI |
---|---|---|
Development of a “Muscle-on-a-Chip” (MoC) platform for the preclinical evaluation of potential therapies for Duchenne muscular dystrophy (2020-2022) | DUCHENNE ESPAÑA, IV Convocatoria Ayudas a Proyectos de Investigación | Juanma Fernandez |
BLAD · BioLiver Assist Device (2020-2021) | AGAUR, Ajuts per a projectes innovadors amb potencial d’incorporació al sector productiu – LLAVOR | Javier Ramón |
INNOTEC- Javier Ramon- Naturfiltr (2021-2023) | TECNIO | Javier Ramón |
ASITOC Atomic-Sensor-Integrated Tissue-On-a-Chip: optically detected biomagnetism to understand muscular diseases (2021-2022) | BIST_Barcelona Institute of Science and Technology | Juanma Fernandez |
INTERNATIONAL PROJECTS | FINANCER | PI |
---|---|---|
DAMOC · ‘Diabetes Approach by Multi-Organ-on-a-Chip’ (2017-2022) | ERC | Javier Ramón |
BLOC · Benchtop NMR for Lab-on-Chip (2020-2022) | European Comission FET-Open | Javier Ramón |
PRIVATELY FUNDED PROJECTS | FINANCER | PI |
---|---|---|
Tatami · Therapeutic targeting of MBNL microRNAs as innovative treatments for myotonic dystrophy (2019-2022) | Fundació bancaria «La Caixa» | Javier Ramón |
FINISHED PROJECTS | FINANCER | PI |
---|---|---|
Programa Faster Future 2020: COVID-19 (2021) | Fundraising | Javier Ramón |
INDUCT · Fabrication of a biomimetic in vitro model of the intestinal tube muscle wall: smooth muscle-on-a-chip (2018-2020) | MINECO | Javier Ramón |
Publications
(See full publication list in ORCID)
[br]
Equipment
Micro and nanofabrication techniques:
- 3D microstructures on hydrogel materials
- Mini-bioreactor for 3D cell culture
- Microelectrodes fabrication
- Synthesis and chemical modification of polymers and surfaces
- Dielectrophoretic cells and micro particles manipulation
Characterization techniques:
- Optical Microscopes (white light/epifluorescence)
- Electrochemical techniques (Potentiometric/Amperometric/Impedance spectroscopy)
- Immunosensing techniques (Fluorescence ELISA/Colorimetric ELISA/magneto ELISA)
Equipment:
- Microfluidic systems (High precision syringe pumps/Peristaltic pumps/Micro valves)
- Biological safety cabinet (class II)
- Epifluorescence microscope for live-cell imaging
- Pulsar – a high-resolution, 60MHz benchtop NMR spectrometer from Oxford Instruments
Access to the Nanotechnology Platform (IBEC Core Facilities): equipment for hot embossing lithography, polymer processing and photolithography, chemical wet etching, e-beam evaporation and surface characterization (TOF-SIMS)
Access to the Scientific and Technological Centers (University of Barcelona): equipment for surface analysis (XPS, AFM, XRD), organic structures characterization (NMR) and microscopy techniques (SEM, TEM, confocal)
Collaborations
We collaborated closely with Professor Ruben Artero from Instituto de Investigaciones Clínicas de Valencia (INCLIVA) and medical doctor Vilchez from Hospital de la Fe (Valencia). We develop muscle-on-a-chip devices using 3D tissue cultures and biosensors. During my career, I established national and international collaborations with other researchers, clinicians, and companies. This is reflected by the fact that I attracted competitive funding awarded by the prestigious entity Medical Research Council (UK), focused on studying Duchenne’s rare disease. I also collaborate on projects with more clinical groups and hospitals, e.g., Hospital de Sant Pau (Barcelona). With senior professor Eduard Gallardo’s group, we are developing human microtissues to study the myasthenia gravis neuromuscular rare disease.
Following the translational nature of my research, I recently became the entrepreneurial scientist of a valorisation project financed by Producte Call (AGAUR) to bring to the market plasmonic biosensors for Myasthenia Gravis diagnosis. I actively collaborate with patient associations such as «Duchenne Parent Project » and «Asociación Conquistando Escalones,» and with national and international companies such as Arthex biotech, SOM biotech, BI/OND (The Netherlands), and BioEmTech (Greece). I have also established contacts with the industry to develop new technology with a high impact on clinical diagnosis and drug development. Specifically, we collaborate with Grifols (Spain), Multivawe (Switzerland), Oxford Instrument (UK) and NovoNordisk (Denmark). This last collaboration aims to develop new biomaterials for cell therapies. I have also established contacts with the industry to develop new technology with a high impact on clinical diagnosis and drug development, specifically collaborating with Multiwave (Switzerland) and Oxford Instrument (United Kingdom). I am also co-founder of a spin-off company, Vitala.
News

El investigador del IBEC James Eills asistirá a un encuentro con premios Nobel
El Dr. James Eills, investigador del IBEC, ha sido seleccionado para asistir al prestigioso Lindau Nobel Laureate Meeting que reúne a destacados jóvenes científicos de todo el mundo con premios … Read more

Cumbre científica para luchar contra las enfermedades neuromusculares
Científicos y pacientes se reúnen en el IBEC para buscar nuevas estrategias de tratamiento para estas patologías minoritarias. El periódico Ara entrevistó a Juanma Fernández Costa, investigador postdoctoral del grupo … Read more

Crean un “gimnasio en un chip” que ayudará a estudiar la diabetes y desarrollar nuevos fármacos para su tratamiento
Coincidiendo con el día mundial de la Diabetes, investigadores del IBEC hacen público un estudio en que combinan células musculares y de páncreas en un mismo chip y demuestran que … Read more

Bioingeniería para tratar la diabetes en los medios
Investigadores del Instituto de Bioingeniería de Cataluña (IBEC) liderados por el Profesor de Investigación ICREA Javier Ramón, aparecen en los medios por un reciente estudio en colaboración con investigadores del IDIBAPS, en el que han desarrollado pequeñas esferas capaces de responder a variaciones en los niveles de glucosa y producir insulina in vitro.

Innovadoras esferas hechas con bioingeniería podrían ayudar a tratar la diabetes
Investigadores del IBEC, en colaboración con el IDIBAPS en Barcelona, han desarrollado pequeñas esferas capaces de responder a variaciones en los niveles de glucosa y producir insulina in vitro. Estos esferoides biomiméticos y no tóxicos contienen células β pancreáticas y se prepararon utilizando la bioimpresión 3D. Este enfoque podría ayudar en el futuro a mejorar los resultados clínicos de las estrategias de trasplante de células β para el tratamiento de la diabetes, así como para las plataformas in vitro de desarrollo de fármacos.

Las terapias regenerativas del futuro confluyeron en el Simposio IBEC, con expertos internacionales y más de 300 inscritos
Más de trescientos expertos internacionales en el campo de la investigación en terapias regenerativas se citaron en el simposio organizado por el Instituto de Bioingeniería de Catalunya (IBEC) para presentar los últimos avances en miniórganos, órganos en un chip, bioimpresión 3D e ingeniería de tejidos, entre otros.

Nuevo biosensor con alta sensibilidad detecta marcador inflamatorio en músculo
En una publicación reciente en la revista Nanophotonics, investigadores del IBEC presentan un nuevo biosensor para la detección directa y sensible de la proteína interleucina-6 en el músculo, un indicador de inflamación y de potencial enfermedad, demostrando el alto rendimiento del dispositivo en músculos esqueléticos obtenidos por bioingeniería 3D. Este nuevo enfoque puede resultar en una herramienta prometedora para medir la eficacia de fármacos frente a enfermedades en las que hay inflamación, como la distrofia muscular.

Hacia un tratamiento para la distrofia miotónica: primer modelo 3D con células de pacientes
Investigadores del IBEC liderados por Javier Ramón y Juan M. Fernández desarrollan el primer modelo tridimensional para la distrofia miotónica, una enfermedad rara y sin cura. El modelo combina células de paciente y técnicas de bioingeniería y representa un gran avance con respecto a la utilización de animales y de cultivos celulares. Permitirá diseñar tratamientos personalizados y más efectivos, y testar futuros fármacos de una manera mucho más eficiente.

Two IBEC projects granted by “Knowledge Industry Call” of the Catalan Government
A project led by Elisabeth Engel aimed to fabricate and test a dressing prototype for wound healing, and another project led by Javier Ramón with the goal of developing an artificial liver, have been granted by the Knowledge Industry Programme of the Catalan Government.

IBEC participa en el Innovation Day Barcelona 2020
Desde el 31 de octubre hasta el 7 de noviembre participantes de distintos ámbitos y nacionalidades participaron en la 3ª edición del Innovation Day (i-Day), una serie de eventos organizados por EIT Health en colaboración con instituciones locales de investigación y salud.