DONATE

Staff member

Xiomara Gislen Fernández Garibay
Staff member publications

Fernández-Garibay, Xiomara, Gomez-Florit, Manuel, Domingues, Rui M A, Gomes, Manuela, Fernandez-Costa, Juan M., Ramon, Javier, (2022). Xeno-free bioengineered human skeletal muscle tissue using human platelet lysate-based hydrogels Biofabrication 14, 045015

Abstract Bioengineered human skeletal muscle tissues have emerged in the last years as new in vitro systems for disease modeling. These bioartificial muscles are classically fabricated by encapsulating human myogenic precursor cells in a hydrogel scaffold that resembles the extracellular matrix. However, most of these hydrogels are derived from xenogenic sources, and the culture media is supplemented with animal serum, which could interfere in drug testing assays. On the contrary, xeno-free biomaterials and culture conditions in tissue engineering offer increased relevance for developing human disease models. In this work, we used human platelet lysate-based nanocomposite hydrogels (HUgel) as scaffolds for human skeletal muscle tissue engineering. These hydrogels consist of human platelet lysate reinforced with cellulose nanocrystals (a-CNC) that allow tunable mechanical, structural, and biochemical properties for the 3D culture of stem cells. Here, we developed hydrogel casting platforms to encapsulate human muscle satellite stem cells in HUgel. The a-CNC content was modulated to enhance matrix remodeling, uniaxial tension, and self-organization of the cells, resulting in the formation of highly aligned, long myotubes expressing sarcomeric proteins. Moreover, the bioengineered human muscles were subjected to electrical stimulation, and the exerted contractile forces were measured in a non-invasive manner. Overall, our results demonstrated that the bioengineered human skeletal muscles could be built in xeno-free cell culture platforms to assess tissue functionality, which is promising for drug development applications.

JTD Keywords: 3d culture, generation, identification, image, manipulate, matrigel, mechanics, model, platelet lysate, scaffolds, tissue engineering, xeno-free, Platform, Skeletal muscle


Fernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, Fernández-Costa JM, Ramón-Azcón J, (2021). Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle Biofabrication 13,

Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models and in vitro two-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the first in vitro 3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.

JTD Keywords: 3d cell culture, hydrogel micropatterning, myotonic dystrophy, skeletal muscle, tissue engineering, 3d cell culture, Hydrogel micropatterning, Myotonic dystrophy, Skeletal muscle, Tissue engineering


Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J, (2021). Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies Journal Of Tissue Engineering 12,

© The Author(s) 2021. Muscular dystrophies are a group of highly disabling disorders that share degenerative muscle weakness and wasting as common symptoms. To date, there is not an effective cure for these diseases. In the last years, bioengineered tissues have emerged as powerful tools for preclinical studies. In this review, we summarize the recent technological advances in skeletal muscle tissue engineering. We identify several ground-breaking techniques to fabricate in vitro bioartificial muscles. Accumulating evidence shows that scaffold-based tissue engineering provides topographical cues that enhance the viability and maturation of skeletal muscle. Functional bioartificial muscles have been developed using human myoblasts. These tissues accurately responded to electrical and biological stimulation. Moreover, advanced drug screening tools can be fabricated integrating these tissues in electrical stimulation platforms. However, more work introducing patient-derived cells and integrating these tissues in microdevices is needed to promote the clinical translation of bioengineered skeletal muscle as preclinical tools for muscular dystrophies.

JTD Keywords: biomaterials, drug screening platforms, muscular dystrophy, skeletal muscle, tissue engineering, Biomaterials, Drug screening platforms, Muscular dystrophy, Skeletal muscle, Tissue engineering


Hernández-Albors, Alejandro, Castaño, Albert G., Fernández-Garibay, Xiomara, Ortega, María Alejandra, Balaguer, Jordina, Ramón-Azcón, Javier, (2019). Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines Biosensors and Bioelectronics: X 2, 100025

Understanding the protein-secretion dynamics from single, specific tissues is critical toward the advancement of disease detection and treatments. However, such secretion dynamics remain difficult to measure in vivo due to the uncontrolled contributions from other tissue populations. Here, we describe an integrated platform designed for the reliable, near real-time measurements of cytokines secreted from an in vitro single-tissue model. In our setup, we grow 3D biomimetic tissues to discretize cytokine source, and we separate them from a magnetic microbead-based biosensing system using a Transwell insert. This design integrates physiochemically controlled biological activity, high-sensitivity protein detection (LOD < 20 pg mL−1), and rapid protein diffusion to enable non-invasive, near real-time measurements. To showcase the specificity and sensitivity of the system, we use our setup to probe the inflammatory process related to the protein Interleukine 6 (IL-6) and to the Tumor Necrosis Factor (TNF-α). We show that our setup can monitor the time-dependence profile of IL-6 and TNF-α secretion that results from the electrical and chemical stimulation of 3D skeletal muscle tissues. We demonstrate a novel and affordable methodology for discretizing the secretion kinetics of specific tissues for advancing metabolic-disorder studies and drug-screening applications.

JTD Keywords: Microphysiological tissues, Tissue engineering, Electrochemical, biosensors, Magnetic particles, Skeletal muscle, Electric stimulation


Ortega, María A., Fernández-Garibay, Xiomara, Castaño, Albert G., De Chiara, Francesco, Hernández-Albors, Alejandro, Balaguer-Trias, Jordina, Ramón-Azcón, Javier, (2019). Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α Lab on a Chip 19, 2568-2580

Despite the increasing number of organs-on-a-chip that have been developed in the past decade, limited efforts have been made to integrate a sensing system for in situ continual measurements of biomarkers from three-dimensional (3D) tissues. Here, we present a custom-made integrated platform for muscle cell stimulation under fluidic conditions connected with a multiplexed high-sensitivity electrochemical sensing system for in situ monitoring. To demonstrate this, we use our system to measure the release levels and release time of interleukin 6 and tumor necrosis factor alpha in vitro by 3D muscle microtissue under electrical and biological stimulations. Our experimental design has enabled us to perform multiple time point measurements using functionalized screen-printed gold electrodes with sensitivity in the ng mL−1 range. This affordable setup is uniquely suited for monitoring factors released by 3D single cell types upon external stimulation for metabolic studies.

JTD


García-Lizarribar, Andrea, Fernández-Garibay, Xiomara, Velasco-Mallorquí, Ferran, Castaño, Albert G., Samitier, Josep, Ramon-Azcon, Javier, (2018). Composite biomaterials as long-lasting scaffolds for 3D bioprinting of highly aligned muscle tissue Macromolecular Bioscience 18, (10), 1800167

Abstract New biocompatible materials have enabled the direct 3D printing of complex functional living tissues, such as skeletal and cardiac muscle. Gelatinmethacryloyl (GelMA) is a photopolymerizable hydrogel composed of natural gelatin functionalized with methacrylic anhydride. However, it is difficult to obtain a single hydrogel that meets all the desirable properties for tissue engineering. In particular, GelMA hydrogels lack versatility in their mechanical properties and lasting 3D structures. In this work, a library of composite biomaterials to obtain versatile, lasting, and mechanically tunable scaffolds are presented. Two polysaccharides, alginate and carboxymethyl cellulose chemically functionalized with methacrylic anhydride, and a synthetic material, such as poly(ethylene glycol) diacrylate are combined with GelMA to obtain photopolymerizable hydrogel blends. Physical properties of the obtained composite hydrogels are screened and optimized for the growth and development of skeletal muscle fibers from C2C12 murine cells, and compared with pristine GelMA. All these composites show high resistance to degradation maintaining the 3D structure with high fidelity over several weeks. Altogether, in this study a library of biocompatible novel and totally versatile composite biomaterials are developed and characterized, with tunable mechanical properties that give structure and support myotube formation and alignment.

JTD