Oliver-Vila, Irene, Sesma-Herrero, Eduardo, Belda, Francisco, Seriola, Anna, Ojosnegros, Samuel, (2025). Robust differentiation and potent immunomodulation of human mesenchymal stromal cells cultured with a xeno-free GMP protein supplement Cytotherapy
Larrañaga, Enara, Marin-Riera, Miquel, Abad-Lázaro, Aina, Bartolomé-Català, David, Otero, Aitor, Fernández-Majada, Vanesa, Batlle, Eduard, Sharpe, James, Ojosnegros, Samuel, Comelles, Jordi, Martinez, Elena, (2025). Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning Nature Communications 16, 382
Borges, NC, Ishanzadeh, MCS, Acacio, M, Mestres, E, Matia-Algue, Q, Seriola, A, Ojosnegros, S, Calderon, G, Wells, D, (2024). MATERNAL SPINDLE TRANSFER (MST) CAN HELP RESTORE DEVELOPMENTAL POTENTIAL, MAINTAIN DNA INTEGRITY AND REDUCE THE INCIDENCE OF ANEUPLOIDIES OCCURRING DURING MEIOSIS II IN IN VITRO AGED OOCYTES. Fertility And Sterility 122, E199-E200
Massafret, Ot, Barragan, Montserrat, lvarez-Gonzalez, Lucia, Aran, Begon, Martin-Mur, Beatriz, Esteve-Codina, Anna, Ruiz-Herrera, Aurora, Ibanez, Elena, Santalo, Josep, (2024). The pluripotency state of human embryonic stem cells derived from single blastomeres of eight-cell embryos Cell Death Dis 179, 203935
Human embryonic stem cells (hESCs) derived from blastocyst stage embryos present a primed state of pluripotency, whereas mouse ESCs (mESCs) display na & iuml;ve pluripotency. Their unique characteristics make na & iuml;ve hESCs more suitable for particular applications in biomedical research. This work aimed to derive hESCs from single blastomeres and determine their pluripotency state, which is currently unclear. We derived hESC lines from single blastomeres of 8-cell embryos and from whole blastocysts, and analysed several na & iuml;ve pluripotency indicators, their transcriptomic profile and their trilineage differentiation potential. No significant differences were observed between blastomere-derived hESCs (bm-hESCs) and blastocyst-derived hESCs (bc-hESCs) for most na & iuml;ve pluripotency indicators, including TFE3 localization, mitochondrial activity, and global DNA methylation and hydroxymethylation, nor for their trilineage differentiation potential. Nevertheless, bm-hESCs showed an increased single-cell clonogenicity and a higher expression of na & iuml;ve pluripotency markers at early passages than bc-hESCs. Furthermore, RNA-seq revealed that bc-hESCs overexpressed a set of genes related to the postimplantational epiblast. Altogether, these results suggest that bm-hESCs, although displaying primed pluripotency, would be slightly closer to the na & iuml;ve end of the pluripotency continuum than bc-hESCs.
JTD Keywords: Demethylation, Derivatio, Differentiation, Hesc,derivation,blastomeres,na & iuml, Human feeder cells, Induction, Lines, Maintenance, Mouse, Naive pluripotency, Transition, Ve,primed,pluripotenc
Parra, Albert, Denkova, Denitza, Burgos-Artizzu, Xavier P, Aroca, Ester, Casals, Marc, Godeau, Amelie, Ares, Miguel, Ferrer-Vaquer, Anna, Massafret, Ot, Oliver-Vila, Irene, Mestres, Enric, Acacio, Monica, Costa-Borges, Nuno, Rebollo, Elena, Chiang, Hsiao Ju, Fraser, Scott E, Cutrale, Francesco, Seriola, Anna, Ojosnegros, Samuel, (2024). METAPHOR: Metabolic evaluation through phasor-based hyperspectral imaging and organelle recognition for mouse blastocysts and oocytes Proceedings Of The National Academy Of Sciences Of The United States Of America 121, e2315043121
Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.
JTD Keywords: Ai, Consumption, Culture, Embryo development, Fluorescence, Hyperspectral imagin, Implantation, In vitro fertilization, Infertility, Label-free imaging, Microscopy, Morphokinetics, Oxygen concentrations, Selectio, Time-lapse
Ojosnegros, S, Parra, A, Massafret, O, Burgos-Artizzu, X, Ferrer-Vaquer, A, Ares, M, Denkova, D, Parriego, M, Sole, M, Boada, M, Seriola, A, (2024). METAPHOR: METabolic imaging through AI-powered Phasor-based Hyperspectral analysis and Organelle recognition for the classification of human blastocysts - O-249 Human Reproduction 39, I143-I143
Ojosnegros, Samuel, Parra, Albert, Denkova, Denitza, Burgos-Artizzu, Xavier P Paolo, Oliver-Vila, Irene, Costa Borges, Nuno, Mestres, Enric, Acacio, Monica, Seriola, Anna, (2023). ROBUST CLASSIFICATION OF MAMMALIAN EMBRYOS AND OOCYTES BASED ON LABEL-FREE HYPERSPECTRAL IMAGING AND ARTIFICIAL INTELLIGENCE Fertility And Sterility 120, E42-E42
Borges, NC, Mestres, E, Acacio, M, Parra, A, Castello, C, Matia-Algué, Q, Burgos-Artizzu, XPP, Sandoval, MC, Seriola, A, Ojosnegros, S, Calderon, G, (2023). MATERNAL SPINDLE TRANSFER RESTORES THE EMBRYO DEVELOPMENTAL COMPETENCE OF POOR-QUALITY OOCYTES IDENTIFIED NON-INVASIVELY BY HYPERSPECTRAL IMAGING: PROOF OF CONCEPT IN THE MOUSE MODEL. Fertility And Sterility 120, E215-E215
Pietroforte, S, Monasterio, MB, Ferrer-Vaquer, A, Irimia, M, Ibáñez, E, Popovic, M, Vassena, R, Zambelli, F, (2023). Specific processing of meiosis-related transcript is linked to final maturation in human oocytes Molecular Human Reproduction 29, gaad021
Human meiosis in oocytes entails an intricate regulation of the transcriptome to support late oocyte growth and early embryo development, both crucial to reproductive success. Currently, little is known about the co- and post-transcriptional mRNA processing mechanisms regulating the last meiotic phases, which contribute to transcriptome complexity and influence translation rates. We analyzed gene expression changes, splicing and pre-mRNA processing in an RNA sequencing set of 40 human oocytes at different meiotic maturation stages, matured both in vivo and in vitro. We found abundant untranslated region (UTR) processing, mostly at the 3' end, of meiosis-related genes between the germinal vesicle (GV) and metaphase II (MII) stages, supported by the differential expression of spliceosome and pre-mRNA processing related genes. Importantly, we found very few differences among GV oocytes across several durations of IVM, as long as they did not reach MII, suggesting an association of RNA processing and successful meiosis transit. Changes in protein isoforms are minor, although specific and consistent for genes involved in chromosome organization and spindle assembly. In conclusion, we reveal a dynamic transcript remodeling during human female meiosis, and show how pre-mRNA processing, specifically 3'UTR shortening, drives a selective translational regulation of transcripts necessary to reach final meiotic maturation.© The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
JTD Keywords: 3 & prime, alternative splicing, gene expression, meiosis, oocyte competence, program, rna, splicing, untranslated region processing, untranslated regions, 3′ untranslated region processing, 3′ untranslated regions, Alternative splicing, Expression, Gene expression, Human oocytes, Meiosis, Oocyte competence, Splicing
Ojosnegros, S, Parra, A, Denkova, D, Burgos-Artizzu, X, Oliver, I, Fraser, SE, Chiang, HJ, Cutrale, F, Costa-Borges, N, Mestres, E, Acacio, M, Calderón, G, Rebollo, E, Veiga, A, Seriola, A, (2023). Metabolic classification of embryos and oocytes based on hyperspectral imaging and machine learning (O-237) Human Reproduction 38, O-237
Costa-Borges, N, Parra, A, Mestres, E, Acacio, M, Castello, C, Seriola, A, Ojosnegros, S, Calderón, G, (2023). Maternal spindle transfer restores the developmental competence of in vitro aged oocytes with diminished metabolic activity identified by hyperspectral imaging (O-208) Human Reproduction 38, O208
Larrañaga, E, Fernández-Majada, V, Ojosnegros, S, Comelles, J, Martinez, E, (2022). Ephrin Micropatterns Exogenously Modulate Cell Organization in Organoid‐Derived Intestinal Epithelial Monolayers Advanced Materials Interfaces 9, 2201301
JTD Keywords: adhesion, attachment, growth, ligands, membrane, microcontact printing, migration, organoid-derived intestinal epithelia, receptor, tissue organization, Eph-ephrin, Stem-cells
Sharma, K, Uraji, J, Ammar, OF, Ali, ZE, Liperis, G, Modi, D, Ojosnegros, S, Shahbazi, MN, Fraire-Zamora, JJ, (2022). #ESHREjc report: renewing the old: novel stem cell research for unsolved ART problems Human Reproduction 37, 2224-2227
Clua-Ferre, L, De Chiara, F, Rodriguez-Comas, J, Comelles, J, Martinez, E, Godeau, AL, Garcia-Alaman, A, Gasa, R, Ramon-Azcon, J, (2022). Collagen-Tannic Acid Spheroids for beta-Cell Encapsulation Fabricated Using a 3D Bioprinter Advanced Materials Technologies 7, 2101696
Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.© 2022 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH.
JTD Keywords: 3d bioprinter, beta-cell, biomaterial, collagen, encapsulation, mechanics, microspheres, survival, 3d bioprinter, ?-cell, Advanced material technologies, Biocompatibility, Cell encapsulations, Cells, Collagen, Cross-linking, Cytology, Drug delivery, Encapsulation, Fabrication, Flavonoids, Gelation, In-vitro, Insulin injections, Insulin release, Microspheres, Tannic acid, Tannins, Throughput, Tissue grafts, Type 1 diabetes, Β‐cell
Ojosnegros, S, Godeau, A, Aroca, E, Sole, M, Parriego, M, Boada, M, Veiga, A, Lesman, A, Tchaicheeyan, O, Goren, S, Seriola, A, (2022). 3D live-imaging reconstruction of the human embryo implantation ex vivo (P-412) Human Reproduction 37, I386-I386
Ojosnegros, S, Seriola, A, Aroca, E, Godeau, A, Denkova, D, Casals, M, (2021). Globulin-rich protein supplements improve blastulation efficiency in culture and promote implantation in vitro Human Reproduction 36, 214-215
Ojosnegros, S, Seriola, A, Godeau, AL, Veiga, A, (2021). Embryo implantation in the laboratory: an update on current techniques Human Reproduction Update 27, 501-530
BACKGROUND: The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE: A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed. The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS: We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES: We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS: The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
JTD Keywords: in vitro models, blastocyst, blastocyst-like structures, early-pregnancy, endometrial cells, epidermal-growth-factor, gene-expression, implantation, in vitro models, in-vitro model, indian hedgehog, organoids, receptivity, self-organization, spheroids, trophoblast, trophoblast invasion, uterine receptivity, Blastocyst, Blastocyst-like structures, Early-pregnancy, Endometrial cells, Endometrial stromal cells, Epidermal-growth-factor, Gene-expression, Implantation, In vitro models, In-vitro model, Indian hedgehog, Organoids, Receptivity, Self-organization, Spheroids, Trophoblast, Trophoblast invasion, Uterine receptivity
Cutrale, Francesco, Rodriguez, Daniel, Hortigüela, Verónica, Chiu, Chi-Li, Otterstrom, Jason, Mieruszynski, Stephen, Seriola, Anna, Larrañaga, Enara, Raya, Angel, Lakadamyali, Melike, Fraser, Scott E., Martinez, Elena, Ojosnegros, Samuel, (2019). Using enhanced number and brightness to measure protein oligomerization dynamics in live cells Nature Protocols 14, 616-638
Protein dimerization and oligomerization are essential to most cellular functions, yet measurement of the size of these oligomers in live cells, especially when their size changes over time and space, remains a challenge. A commonly used approach for studying protein aggregates in cells is number and brightness (N&B), a fluorescence microscopy method that is capable of measuring the apparent average number of molecules and their oligomerization (brightness) in each pixel from a series of fluorescence microscopy images. We have recently expanded this approach in order to allow resampling of the raw data to resolve the statistical weighting of coexisting species within each pixel. This feature makes enhanced N&B (eN&B) optimal for capturing the temporal aspects of protein oligomerization when a distribution of oligomers shifts toward a larger central size over time. In this protocol, we demonstrate the application of eN&B by quantifying receptor clustering dynamics using electron-multiplying charge-coupled device (EMCCD)-based total internal reflection microscopy (TIRF) imaging. TIRF provides a superior signal-to-noise ratio, but we also provide guidelines for implementing eN&B in confocal microscopes. For each time point, eN&B requires the acquisition of 200 frames, and it takes a few seconds up to 2 min to complete a single time point. We provide an eN&B (and standard N&B) MATLAB software package amenable to any standard confocal or TIRF microscope. The software requires a high-RAM computer (64 Gb) to run and includes a photobleaching detrending algorithm, which allows extension of the live imaging for more than an hour.
JTD