The synthesis and self-assembled monolayer (SAM) formation of a calix[4]crown-5 derivative are reported. Several techniques, including electrochemistry, atomic force microscopy (AFM), Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle measurements have been applied to characterise the monolayer film designed for chemical sensor applications. The recognition properties of this SAM for metal cations has been investigated using impedance spectroscopy (IS) showing an electrochemical response proportional to calcium ion concentration in the range from 10(-7) M to 10(-2) M. This response is related to microscopic changes at the gold surface induced by selective binding by the immobilised calixarene.
Planar sodium-selective potentiometric microelectrodes with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide) ions ([3,3'-Co(1,2-C2B9-H-11)(2)](-))) as solid contact layer between the polymeric sensitive membrane and the platinum substrate have been constructed. The p-tert-butylcalix[4]arene ethyl ester was used as ionophore for sodium recognition. The microelectrode shows a linear response for Na+ concentrations between 3.0 x 10(-6) and 1.0 x 10(-1) M with a Nernstian slope of 58.65 +/- 2 mV per decade and a detection limit of 1.45 x 10(-6) M. The response time was 14 s, and the electrode is suitable for use within the pH range of 3-10.
Cookie Consent The IBEC website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos that use marketing cookies. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement.
Read our cookie policy