DONATE

Staff member

Aranzazu Villasante Bermejo

+34 93 4020536
Staff member publications

Villasante, Aranzazu, Lopez-Martinez, Maria Jose, Quinonero, Gema, Garcia-Lizarribar, Andrea, Peng, Xiaofeng, Samitier, Josep, (2024). Microfluidic model of the alternative vasculature in neuroblastoma In Vitro Models 3, 49-63

Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon. In this study, we aim to recreate the intricate vascular system of NB in an in vitro context, encompassing both types of vascularization, by developing a novel neuroblastoma-on-a-chip model. We designed a collagen I/fibrin-based hydrogel closely mirroring NB's physiological composition and tumor stiffness. This biomaterial created a supportive environment for the viability of NB and endothelial cells. Implementing a physiological shear stress value, aligned with the observed range in arteries and capillaries, within the microfluidic chip facilitated the successful development of vessel-like structures and triggered transdifferentiation of NB cells into TECs. The vascularized neuroblastoma-on-a-chip model introduced here presents a promising and complementary strategy to animal-based research with a significant capacity for delving into NB tumor biology and vascular targeting therapy.

JTD Keywords: 3d tumor model, Angiogenesis, Endothelial-cells, Microfluidic device, Neuroblastoma, Origi, Transdifferentiation, Tumor, Tumor-derived endothelial cells, Tumor-on-a-chip, Vasculature


Pereira, Ines, Lopez-Martinez, Maria J, Villasante, Aranzazu, Introna, Clelia, Tornero, Daniel, Canals, Josep M, Samitier, Josep, (2023). Hyaluronic acid-based bioink improves the differentiation and network formation of neural progenitor cells Frontiers In Bioengineering And Biotechnology 11, 1110547

Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge.Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture.Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of beta-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.

JTD Keywords: biomaterials, bioprinting, differentiation, in vitro models, neural progenitor cells, 2d, Biomaterials, Bioprinting, C17.2, Differentiation, Extracellular-matrix, Hydrogels, In vitro models, In-vitro, Neural progenitor cells, Neuronal models, Proliferation, Scaffolds, Stem-cells, Substrate stiffness


Garcia Lizarribar, Andrea, Villasante, Aranzazu, Samitier, Josep, (2022). LARGE-SCALE PRODUCTION OF SELF-DIFFERENTIATING ENGINEERED MUSCLES WITH ADVANCED MATURATION AND PROVED FUNCTIONALITY USING AN OPTIMIZED BIOPRINTABLE MATERIAL. Tissue Engineering Part a 28, S106-S106