Home hospitalization (HH) is presented as a healthcare alternative capable of providing high standards of care when patients no longer need hospital facilities. Although HH seems to lower healthcare costs by shortening hospital stays and improving patient's quality of life, the lack of continuous observation at home may lead to complications in some patients. Since blood tests have been proven to provide relevant prognosis information in many diseases, this paper analyzes the impact of different sampling methods on the prediction of HH outcomes. After a first exploratory analysis, some variables extracted from routine blood tests performed at the moment of HH admission, such as hemoglobin, lymphocytes or creatinine, were found to unmask statistically significant differences between patients undergoing successful and unsucessful HH stays. Then, predictive models were built with these data, in order to identify unsuccessful cases eventually needing hospital facilities. However, since these hospital admissions during HH programs are rare, their identification through conventional machine-learning approaches is challenging. Thus, several sampling strategies designed to face class imbalance were herein overviewed and compared. Among the analyzed approaches, over-sampling strategies, such as ROSE (Random Over-Sampling Examples) and conventional random over-sampling, showed the best performances. Nevertheless, further improvements should be proposed in the future so as to better identify those patients not benefiting from HH.
Las cookies son importantes para ti, influyen en tu experiencia de navegación, nos ayudan a proteger tu privacidad y permiten realizar las peticiones que nos solicites a través de la web. Utilizamos cookies propias y de terceros para analizar nuestros servicios y mostrarte publicidad relacionada con tus preferencias en base a un perfil elaborado con tus hábitos de navegación. Puedes "Aceptar" o "Rechazar" aquellas cookies que no sean técnicas, así como configurar tus preferencias pulsando "Configurar Cookies". Más información, consulta nuestra Política de Cookies.
Funcionales
Siempre activo
El almacenamiento o acceso técnico es estrictamente necesario para el propósito legítimo de permitir el uso de un servicio específico solicitado explícitamente por el abonado o el usuario, o con el único fin de llevar a cabo la transmisión de una comunicación a través de una red de comunicaciones electrónicas.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.El almacenamiento o acceso técnico que se utiliza exclusivamente con fines estadísticos anónimos. Sin una orden judicial, el cumplimiento voluntario por parte de su proveedor de servicios de Internet, o registros adicionales de un tercero, la información almacenada o recuperada con este único propósito no puede utilizarse normalmente para identificarle.
Marketing
El almacenamiento o acceso técnico es necesario para crear perfiles de usuario con el fin de enviar publicidad, o para rastrear al usuario en un sitio web o en varios sitios web con fines de marketing similares.