by Keyword: Electric stimulation
Hernández-Albors, Alejandro, Castaño, Albert G., Fernández-Garibay, Xiomara, Ortega, María Alejandra, Balaguer, Jordina, Ramón-Azcón, Javier, (2019). Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines Biosensors and Bioelectronics: X 2, 100025
Understanding the protein-secretion dynamics from single, specific tissues is critical toward the advancement of disease detection and treatments. However, such secretion dynamics remain difficult to measure in vivo due to the uncontrolled contributions from other tissue populations. Here, we describe an integrated platform designed for the reliable, near real-time measurements of cytokines secreted from an in vitro single-tissue model. In our setup, we grow 3D biomimetic tissues to discretize cytokine source, and we separate them from a magnetic microbead-based biosensing system using a Transwell insert. This design integrates physiochemically controlled biological activity, high-sensitivity protein detection (LOD < 20 pg mL−1), and rapid protein diffusion to enable non-invasive, near real-time measurements. To showcase the specificity and sensitivity of the system, we use our setup to probe the inflammatory process related to the protein Interleukine 6 (IL-6) and to the Tumor Necrosis Factor (TNF-α). We show that our setup can monitor the time-dependence profile of IL-6 and TNF-α secretion that results from the electrical and chemical stimulation of 3D skeletal muscle tissues. We demonstrate a novel and affordable methodology for discretizing the secretion kinetics of specific tissues for advancing metabolic-disorder studies and drug-screening applications.
JTD Keywords: Microphysiological tissues, Tissue engineering, Electrochemical, biosensors, Magnetic particles, Skeletal muscle, Electric stimulation