Javier Gomez Fernandez
Group Leader / ICREA Research Professor
jgomez

ibecbarcelona.eu
Staff member publications
Kumar, P V Ajay, Ng, Shiwei, Chong, Yung Boon, Lee, Heow Pueh, Dritsas, Stylianos, Fernandez, Javier G, (2025). Characterization of the electrical, acoustic, and thermal insulating properties of biodegradable chito-cellulosic structural composites Sustainable Materials And Technologies 44, e01394
Insulation materials are essential for engineering efficiency, as they directly reduce energy losses or eliminate the need for extra components to compensate for them. However, most insulation materials are non-biodegradable polymers that significantly contribute to environmental degradation during production and disposal. This study explores the use of bioinspired chito-cellulosic materials -a family of biological composites known in structural applications for their low cost, versatile manufacturing, and ecological integration- as sustainable insulation. The study compares three chito-cellulosic variants with different cellulose compositions and evaluates their electrical, thermal, and acoustic insulation capabilities, as well as flammability, biodegradability, environmental impact, and mechanical properties. The insulating results are compared to conventional polyurethane foams, demonstrating lower thermal insulation capabilities, similar electrical insulation, and better acoustic insulation. Moreover, they offer the advantages of being 3D-printable, fully biodegradable in environmental conditions, and fireproof, highlighting their potential as a viable green alternative to synthetic insulators.
JTD Keywords: Cellulose, Chitosan, Flam, Foam, Insulation
Kompa, Akshayakumar, Ravindran, Revathi, Hao, Jianyu, Fernandez, Javier G, (2025). A low-cost biocompatible and biodegradable multipurpose resistive ink for monitoring biological systems Journal Of Materials Chemistry b 13, 3295-3303
Flexible and biocompatible strain sensors are becoming increasingly important in fields such as health monitoring, wearable electronics, and environmental sensing because they offer significant advantages over conventional rigid systems. However, they lack the versatility and ecological and physiological biocompatibility necessary for broader integration within biological systems. Here, we describe the development of an inexpensive water-based plasticized chitosan-carbon black composite ink that can be used to produce conductive and biocompatible strain sensors. The ink can be applied to various surfaces, including skin, internal organs, and other biological tissues, using numerous methods, such as painting, dipping, and stamping. Furthermore, this unprecedented ability to attach and conform to biological surfaces allows the exploration of secondary sensing innovations, such as exploiting skin wrinkles to improve sensitivity. This study demonstrates that the ink exhibits a reliable change in electrical resistance in response to a wide range of motions, from subtle vibrations during speech and heartbeats to extensive articulations, like finger and elbow movements. This exceptional sensitivity range, biocompatibility, and the ink's low cost, biodegradability, and ease of removal enhance its applicability in sustainable, temporary, and customizable sensing solutions, highlighting its potential for versatile applications in human health monitoring, motion detection, and environmental sensing.
JTD Keywords: Blac, Chitin, Composites, Performance strain sensors
Background: Patients with acutely decompensated cirrhosis (AD) may or may not develop acute-on-chronic liver failure (ACLF). ACLF is characterized by high-grade systemic inflammation, organ failures (OF) and high short-term mortality. Although patients with AD cirrhosis exhibit distinct clinical phenotypes at baseline, they have low short-term mortality, unless ACLF develops during follow-up. Because little is known about the association of profile of systemic inflammation with clinical phenotypes of patients with AD cirrhosis, we aimed to investigate a battery of markers of systemic inflammation in these patients.
Methods: Upon hospital admission baseline plasma levels of 15 markers (cytokines, chemokines, and oxidized albumin) were measured in 40 healthy controls, 39 compensated cirrhosis, 342 AD cirrhosis, and 161 ACLF. According to EASL-CLIF criteria, AD cirrhosis was divided into three distinct clinical phenotypes (AD-1: Creatinine<1.5, no HE, no OF; AD-2: creatinine 1.5–2, and or HE grade I/II, no OF; AD-3: Creatinine<1.5, no HE, non-renal OF).
Results: Most markers were slightly abnormal in compensated cirrhosis, but markedly increased in AD. Patients with ACLF exhibited the largest number of abnormal markers, indicating “full-blown” systemic inflammation (all markers). AD-patients exhibited distinct systemic inflammation profiles across three different clinical phenotypes. In each phenotype, activation of systemic inflammation was only partial (30% of the markers). Mortality related to each clinical AD-phenotype was significantly lower than mortality associated with ACLF (p < 0.0001 by gray test). Among AD-patients baseline systemic inflammation (especially IL-8, IL-6, IL-1ra, HNA2 independently associated) was more intense in those who had poor 28-day outcomes (ACLF, death) than those who did not experience these outcomes.
Conclusions: Although AD-patients exhibit distinct profiles of systemic inflammation depending on their clinical phenotypes, all these patients have only partial activation of systemic inflammation. However, those with the most extended baseline systemic inflammation had the highest the risk of ACLF development and death.
JTD Keywords: ACLF, Acute decompensation, Cirrhosis, Organ dysfunction, Organ failure, Signature
Fernandez, Javier G., Samitier, Josep, Mills, Christopher A., (2011). Simultaneous biochemical and topographical patterning on curved surfaces using biocompatible sacrificial molds
Journal of Biomedical Materials Research - Part A , 98A, (2), 229-234
A method for the simultaneous (bio)chemical and topographical patterning of enclosed structures in poly(dimethyl siloxane) (PDMS) is presented. The simultaneous chemical and topography transference uses a water-soluble chitosan sacrificial mold to impart a predefined pattern with micrometric accuracy to a PDMS replica. The method is compared to conventional soft-lithography techniques on planar surfaces. Its functionality is demonstrated by the transference of streptavidin directly to the surface of the three-dimensional PDMS structures as well as indirectly using streptavidin-loaded latex nanoparticles. The streptavidin immobilized on the PDMS is tested for bioactivity by coupling with fluorescently labeled biotin. This proves that the streptavidin is immobilized on the PDMS surface, not in the bulk of the polymer, and is therefore accessible for use as signaling/binding element in micro and bioengineering. The use of a biocompatible polymer and processes enables the technique to be used for the chemical patterning of tissue constructions.
JTD Keywords: Biotechnology, Chitosan, Microfabrication, MEMs, Soft lithography
Fernandez, Javier G., Mills, C. A., Samitier, J., (2009). Complex microstructured 3D surfaces using chitosan biopolymer Small 5, (5), 614-620
A technique for producing micrometer-scale structures over large, nonplanar chitosan surfaces is described. The technique makes use of the rheological characteristics (deformability) of the chitosan to create freestanding, three-dimensional scaffolds with controlled shapes, incorporating defined microtopography. The results of an investigation into the technical limits of molding different combinations of shapes and microtopographies are presented, highlighting the versatility of the technique when used irrespectively with inorganic or delicate organic moulds. The final, replicated scaffolds presented here are patterned with arrays of one-micrometer-tall microstructures over large areas. Structural integrity is characterized by the measurement of structural degradation. Human umbilical vein endothelial cells cultured on a tubular scaffold show that early cell growth is conditioned by the microtopography and indicate possible uses for the structures in biomedical applications. For those applications requiring improved chemical and mechanical resistance, the structures can be replicated in poly(dimethyl siloxane).
JTD Keywords: Biocompatible Materials/ chemistry, Cell Adhesion, Cell Culture Techniques/ methods, Cell Proliferation, Cells, Cultured, Chitosan/ chemistry, Crystallization/methods, Endothelial Cells/ cytology/ physiology, Humans, Materials Testing, Nanostructures/ chemistry/ ultrastructure, Nanotechnology/methods, Particle Size, Surface Properties, Tissue Engineering/methods
Fernandez, Javier G., Mills, C. A., Martinez, E., Lopez-Bosque, M. J., Sisquella, X., Errachid, A., Samitier, J., (2008). Micro- and nanostructuring of freestanding, biodegradable, thin sheets of chitosan via soft lithography
Journal of Biomedical Materials Research - Part A , 85A, (1), 242-247
A technique for imparting micro- and nano-structured topography into the surface of freestanding thin sheets of chitosan is described. Both micro- and nanometric surface structures have been produced using soft lithography. The soft lithography method, based on solvent evaporation, has allowed structures similar to 60 nm tall and similar to 500 X 500 nm(2) to be produced on freestanding similar to 0.5 mm thick sheets of the polymer when cured at 293 K, and structures similar to 400 nm tall and 5 X 5 mu m(2) to be produced when cured at 283 K. Nonstructured chitosan thin sheets (similar to 200 mu m thick) show excellent optical transmission properties in the visible portion of the electromagnetic spectrum. The structured sheets can be used for applications where optical microscopic analysis is required, such as cell interaction experiments and tissue engineering.
JTD Keywords: Chitin/chitosan, Microstructure, Nanotopography, Polymerization, Soft lithography
Mills, C. A., Fernandez, Javier G., Errachid, A., Samitier, J., (2008). The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography
Microelectronic Engineering , 85, (9), 1897-1901
Polymers with high glass transition temperatures, fluorinated ethylene propylene copolymer (FEP) and poly(ethylene naphthalate) (PEN), have been used in imprint lithography as a protective support layer and as a secondary mould, to imprint superficial structures into a polymer with a lower glass transition temperature, namely poly(methyl methacrylate) (PMMA). As a support layer, FEP replaces fragile silicon based supports for the production of freestanding, structured sheets of PMMA, useful, for example, in biomedical applications where transmittance optical microscopy is required. Secondary PEN moulds, produced by imprinting using silicon-based primary moulds, have been used to transfer sub-micrometer tall structures to a freestanding PMMA sheet. Similarly, hole structures, with different dimensions, have been embossed in both sides of a PMMA sheet simultaneously.
JTD Keywords: Polymer engineering, Embossing, Nanoimprint lithography, Biomedical applications
Pla, M., Fernandez, Javier G., Mills, C. A., Martinez, E., Samitier, J., (2007). Micro/nanopatterning of proteins via contact printing using high aspect ratio PMMA stamps and NanoImprint apparatus Langmuir 23, (16), 8614-8618
Micro- and nanoscale protein patterns have been produced via a new contact printing method using a nanoimprint lithography apparatus. The main novelty of the technique is the use of poly(methyl methacrylate) (PMMA) instead of the commonly used poly(dimethylsiloxane) (PDMS) stamps. This avoids printing problems due to roof collapse, which limits the usable aspect ratio in microcontact printing to 10:1. The rigidity of the PMMA allows protein patterning using stamps with very high aspect ratios, up to 300 in this case. Conformal contact between the stamp and the substrate is achieved because of the homogeneous pressure applied via the nanoimprint lithography instrument, and it has allowed us to print lines of protein similar to 150 nm wide, at a 400 nm period. This technique, therefore, provides an excellent method for the direct printing of high-density sub-micrometer scale patterns, or, alternatively, micro-/nanopatterns spaced at large distances. The controlled production of these protein patterns is a key factor in biomedical applications such as cell-surface interaction experiments and tissue engineering.
JTD Keywords: Soft lithography, Cell-adhesion, Microstructures, Fabrication, Stability, Patterns