DONATE

Publications

by Keyword: Organ failure

Schierwagen, R, Gu, WY, Brieger, A, Brüne, B, Ciesek, S, Dikic, I, Dimmeler, S, Geisslinger, G, Greten, FR, Hermann, E, Hildt, E, Kempf, VAJ, Klein, S, Koch, I, Mühl, H, Müller, V, Peiffer, KH, Kestner, RI, Piiper, A, Rohde, G, Scholich, K, Schulz, MH, Storf, H, Toptan, T, Vasa-Nicotera, M, Vehreschild, MJGT, Weigert, A, Wild, PJ, Zeuzem, S, Engelmann, C, Schaefer, L, Welsch, C, Trebicka, J, (2023). Pathogenetic mechanisms and therapeutic approaches of acute-to-chronic liver failure American Journal Of Physiology-Cell Physiology 325, C129-C140

Liver cirrhosis is the end stage of all chronic liver diseases and contributes significantly to overall mortality of 2% globally. The age-standardized mortality from liver cirrhosis in Europe is between 10 and 20% and can be explained by not only the development of liver cancer but also the acute deterioration in the patient's overall condition. The development of complications including accumulation of fluid in the abdomen (ascites), bleeding in the gastrointestinal tract (variceal bleeding), bacterial infections, or a decrease in brain function (hepatic encephalopathy) define an acute decompensation that requires therapy and often leads to acute-on-chronic liver failure (ACLF) by different precipitating events. However, due to its complexity and organ-spanning nature, the pathogenesis of ACLF is poorly understood, and the common underlying mechanisms leading to the development of organ dysfunction or failure in ACLF are still elusive. Apart from general intensive care interventions, there are no specific therapy options for ACLF. Liver transplantation is often not possible in these patients due to contraindications and a lack of prioritization. In this review, we describe the framework of the ACLF-I project consortium funded by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) based on existing findings and will provide answers to these open questions.

JTD Keywords: 12/15-lipoxygenase, combination, inflammation, interleukin-22, metabolism, mortality, organ failure, portal-hypertension, receptor, regeneration, systemic inflammation, systems medicine, translational hepatology, Decompensated cirrhosis, Organ failure, Systemic inflammation, Systems medicine, Translational hepatology


Trebicka, J., Amoros, A., Pitarch, C., Titos, E., Alcaraz-Quiles, J., Schierwagen, R., Deulofeu, C., Fernandez-Gomez, J., Piano, S., Caraceni, P., Oettl, K., Sola, E., Laleman, W., McNaughtan, J., Mookerjee, R. P., Coenraad, M. J., Welzel, T., Steib, C., Garcia, R., Gustot, T., Rodriguez Gandia, M. A., Bañares, R., Albillos, A., Zeuzem, S., Vargas, V., Saliba, F., Nevens, F., Alessandria, C., De Gottardi, A., Zoller, H., Ginès, P., Sauerbruch, T., Gerbes, A., Stauber, R. E., Bernardi, M., Angeli, P., Pavesi, M., Moreau, R., Clària, J., Jalan, R., Arroyo, V., (2019). Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis Frontiers in Immunology 10, 476

Background: Patients with acutely decompensated cirrhosis (AD) may or may not develop acute-on-chronic liver failure (ACLF). ACLF is characterized by high-grade systemic inflammation, organ failures (OF) and high short-term mortality. Although patients with AD cirrhosis exhibit distinct clinical phenotypes at baseline, they have low short-term mortality, unless ACLF develops during follow-up. Because little is known about the association of profile of systemic inflammation with clinical phenotypes of patients with AD cirrhosis, we aimed to investigate a battery of markers of systemic inflammation in these patients. Methods: Upon hospital admission baseline plasma levels of 15 markers (cytokines, chemokines, and oxidized albumin) were measured in 40 healthy controls, 39 compensated cirrhosis, 342 AD cirrhosis, and 161 ACLF. According to EASL-CLIF criteria, AD cirrhosis was divided into three distinct clinical phenotypes (AD-1: Creatinine<1.5, no HE, no OF; AD-2: creatinine 1.5–2, and or HE grade I/II, no OF; AD-3: Creatinine<1.5, no HE, non-renal OF). Results: Most markers were slightly abnormal in compensated cirrhosis, but markedly increased in AD. Patients with ACLF exhibited the largest number of abnormal markers, indicating “full-blown” systemic inflammation (all markers). AD-patients exhibited distinct systemic inflammation profiles across three different clinical phenotypes. In each phenotype, activation of systemic inflammation was only partial (30% of the markers). Mortality related to each clinical AD-phenotype was significantly lower than mortality associated with ACLF (p < 0.0001 by gray test). Among AD-patients baseline systemic inflammation (especially IL-8, IL-6, IL-1ra, HNA2 independently associated) was more intense in those who had poor 28-day outcomes (ACLF, death) than those who did not experience these outcomes. Conclusions: Although AD-patients exhibit distinct profiles of systemic inflammation depending on their clinical phenotypes, all these patients have only partial activation of systemic inflammation. However, those with the most extended baseline systemic inflammation had the highest the risk of ACLF development and death.

JTD Keywords: ACLF, Acute decompensation, Cirrhosis, Organ dysfunction, Organ failure, Signature