Staff member

Staff member publications

Calvo, M., Le Rolle, V., Romero, D., Béhar, N., Gomis, P., Mabo, P., Hernández, A. I., (2019). Recursive model identification for the analysis of the autonomic response to exercise testing in Brugada syndrome Artificial Intelligence in Medicine 97, 98-104

This paper proposes the integration and analysis of a closed-loop model of the baroreflex and cardiovascular systems, focused on a time-varying estimation of the autonomic modulation of heart rate in Brugada syndrome (BS), during exercise and subsequent recovery. Patient-specific models of 44 BS patients at different levels of risk (symptomatic and asymptomatic) were identified through a recursive evolutionary algorithm. After parameter identification, a close match between experimental and simulated signals (mean error = 0.81%) was observed. The model-based estimation of vagal and sympathetic contributions were consistent with physiological knowledge, enabling to observe the expected autonomic changes induced by exercise testing. In particular, symptomatic patients presented a significantly higher parasympathetic activity during exercise, and an autonomic imbalance was observed in these patients at peak effort and during post-exercise recovery. A higher vagal modulation during exercise, as well as an increasing parasympathetic activity at peak effort and a decreasing vagal contribution during post-exercise recovery could be related with symptoms and, thus, with a worse prognosis in BS. This work proposes the first evaluation of the sympathetic and parasympathetic responses to exercise testing in patients suffering from BS, through the recursive identification of computational models; highlighting important trends of clinical relevance that provide new insights into the underlying autonomic mechanisms regulating the cardiovascular system in BS. The joint analysis of the extracted autonomic parameters and classic electrophysiological markers could improve BS risk stratification.

JTD Keywords: Autonomic nervous system, Brugada syndrome, Computational model, Recursive identification

To optimize long-term nocturnal non-invasive ventilation in patients with chronic obstructive pulmonary disease, surface diaphragm electromyography (EMGdi) might be helpful to detect patient-ventilator asynchrony. However, visual analysis is labor-intensive and EMGdi is heavily corrupted by electrocardiographic (ECG) activity. Therefore, we developed an automatic method to detect inspiratory onset from EMGdi envelope using fixed sample entropy (fSE) and a dynamic threshold based on kernel density estimation (KDE). Moreover, we combined fSE with adaptive filtering techniques to reduce ECG interference and improve onset detection. The performance of EMGdi envelopes extracted by applying fSE and fSE with adaptive filtering was compared to the root mean square (RMS)-based envelope provided by the EMG acquisition device. Automatic onset detection accuracy, using these three envelopes, was evaluated through the root mean square error (RMSE) between the automatic and mean visual onsets (made by two observers). The fSE-based method provided lower RMSE, which was reduced from 298 ms to 264 ms when combined with adaptive filtering, compared to 301 ms provided by the RMS-based method. The RMSE was negatively correlated with the proposed EMGdi quality indices. Following further validation, fSE with KDE, combined with adaptive filtering when dealing with low quality EMGdi, indicates promise for detecting the neural onset of respiratory drive.

JTD Keywords: Fixed sample entropy, Adaptive filtering, Root mean square, Diaphragm electromyography, Non-invasive mechanical ventilation, Chronic obstructive pulmonary disease