DONATE

Nanoscale bioelectrical characterization

About

The main goal of the Nanoscale Bioelectrical Characterization group is to develop a multiscale approach to Bioelectricity, covering from the nano- to the microscale. To this end the group combines methods and techniques from Scanning Probe Microscopy, Organic Electronics and Big Data. The main objective is to contribute to develop new label-free biological nanoscale characterization methods and new electronic biosensors.

The group performs research on Scanning Dielectric Microscopy, a set of Scanning Probe Microscopy techniques and methods to measure the local dielectric properties of samples. Over the years, implementations of Scanning Dielectric Microscopy in current sensing, force sensing and at microwave frequencies have been developed. In the case of the force sensing mode, operation in air and liquid environments have been implemented.

At present, the group is centered in developing advanced force volume modes for Scanning Dielectric Microscopy coupled to big data computational and processing techniques.

The objective is to obtain fast functional dielectric maps of complex samples (e.g. cells) with nanoscale spatial resolution and with sensitivity to the subsurface properties.

With the Scanning Dielectric Microscope, we investigate the passive dielectric properties of Biological samples. Among others, we have determined the dielectric constant of lipid bilayers, supramolecular protein structures like virus capsids and tails, bacterial flagella and protein layers, and of DNA. Moreover, the dielectric properties of single viruses, bacterial cells and bacterial endospores have been measured, and we analyzed the effect of environmental humidity in their dielectric response. Finally, we have investigated the dielectric properties of confined water, finding an anomalous low dielectric constant value.

At present, applications are focused in determining the dielectric properties of heterogeneous lipid bilayers, liposomes and eukaryotic cells, all of the in the liquid environment. The objective is to develop a nanoscopic technique able to map the composition of complex biological systems without the use of exogeneous labels.

The Scanning Dielectric Microscopy is also used to investigate the electrical properties of the so-called bacterial nanowires, nanoscale structures produced by electrogenic bacterial cells, which enable the exchange of electrons extracellularly at long distances from the bacterial cell body. Current research is focused in the study of the electric properties of outer membrane cell extensions from Shewanella Oneidensis MR-1 and of protein fibers from the so-called cable bacteria cells.

The group also performs research in the application of Electrolyte Gated Field Effect Transistors as biosensors to record the electrical activity of excitable cells. We have demonstrated the potential of these transistors to record the electrical activity of clusters of cardiomyocyte cells over long periods of time (weeks), and, currently, we are investigating its potential application to other cell types (e.g. neurons) and cell structures (e.g. organoids).

Finally, the group is working in the integration of nanoscale and microscale electrical recording techniques for Biology in a single instrument. We have already demonstrated the possibility to integrate the in-liquid Scanning Dielectric Microscope with the Electrolyte Gated Field Effect Transistor, and, currently, we are working in using this platform to perform multiscale electrical recordings on electrically excitable cells with the objective to correlate nano- and microscopic electrical cell activity.

Staff

Gabriel Gomila Lluch
Group Leader
+34 934 020 206
ggomilaibecbarcelona.eu

Former members:

Dr. Laura Fumagalli | Senior Researcher
Now: Lecturer, School of Physics and Astronomy – Condensed Matter Physics, University of Manchester (UK)
Dr. Annalisa Calò | Postdoc
Now: Postdoc, CUNY Advance Science Research Center (USA)
Dr. Aurora Dols-Pérez | Postdoc
Now: Postdoc at the Technical University of Delft (Nederlands)
Dr. Martin Edwards | Postdoc
Now: Research Assistant Professor, University of Utah (USA)
Daniel Esteban Ferrer | PhD Student
Georg Gramse | PhD Student
Now: Senior Researcher, Johannes Kepler University of Linz (Austria)
Dr. Jordi Otero | Postdoc
Now: Postdoc, Institute For Bioengineering of Catalonia (IBEC)

Marc van der Hofstadt | PhD Student
Maria Chiara Biagi | PhD Student

Projects

INTERNATIONAL PROJECTSFINANCERPI
BORGES · Biosensing with ORGanic ElectronicS (2019-2022)Marie Curie Skłodowska European Training Network (MSCA-ITN-ETN)Gabriel Gomila
NATIONAL PROJECTSFINANCERPI
BIGDATASPM ·  Métodos de datos masivos aplicados a la Microscopía de Sonda de Barrido para estudios eléctricos funcionales en ciencias de la vida (2020-2022)MINECO,  Generación Conocimiento: Proyectos I+DGabriel Gomila
FINISHED PROJECTSFINANCERPI
SGR Grups de recerca consolidats (2017-2020)AGAUR / SGRGabriel Gomila
SPM2.0 · Scanning probe microscopies for nanoscale fast, tomographic and composition imaging (2017-2020)Marie Curie Skłodowska European Training Network (MSCA-ITN-ETN)Gabriel Gomila (Project Coordinator)
NANOMICROWAVE · Microwave Nanotechnology for Semiconductor and Life Sciences (2013-2016)MARIE CURIE – ITNGabriel Gomila
V-SMMART Nano · Volumetric Scanning Microwave Microscopy Analytical and Research Tool for Nanotechnology (2012-2016)NMP – SMEGabriel Gomila
AFM4NanoMed&Bio · European network on applications of Atomic Force Microscopy to Nanomedicine and Life SciencesEU COST Action TD1002Gabriel Gomila (Management Committee Substitute Member)
BIOWIRESENSE · Plataforma universal para la detección de biomarcadores basada en nanocables bacterianos conductores (2017-2019)MINECO, Explora CienciaGabriel Gomila
NANOELECTOMOGRAPHY· Electrical nanotomography based on scanning probe microscopy for nanomaterials and biological samples (2014-2016)MINECO (TEC2013-48344-C2-1-P)Gabriel Gomila
NANOELECTROPHYS · Scanning Electric Force Microscope for Electrophysological Recordings at the Nanoscale
(2016-2019)
MINECO (TEC2016-79156-P)Gabriel Gomila
ICREA Academia Award (2015-2019)Catalan Institution for Research and Advanced Studies (ICREA) / Generalitat de CatalunyaGabriel Gomila

Publications

Equipment

  • Cypher Atomic Force Microscope (Asylum Research)
  • Nanowizard 4 Bio-Atomic Force Microscope (JPK)
  • Cervantes Atomic Force Microscope (Nanotec Electronica)
  • Easy Scan 2 Atomic Force Microscope (Nanosurf)
  • AxioImager A1m Reflection Optical Microscope (Zeiss) equipped with a AxioCam ERc5s (Zeiss)
  • CompactStat portable electrochemical interface and impedance analyzer (Ivium Technologies)
  • Palmsens 4, 8 channel Potentiostat (Palmens)
  • 2 eLockIn204 4-phase Lock-In amplifiers (Anfatec)
  • Keithley 6430 sub-femtoAmp remote sourcemeter
  • Keysight B2912A precision Source/Measure Unit, 2 channels
  • Keysight N9310A RF Signal Generator 9 kHz to 3.0 GHz

Collaborations

  • Dra. Laura Fumagalli
    University of Manchester, United Kingdom
  • Dr. Ferry Kienberger
    Agilent Technologies Austria, Linz, Austria
  • Prof. Marco Sampietro
    Politecnico di Milano, Italy
  • Dr. Jordi Borrell
    University of Barcelona, Spain
  • Prof. Antonio Juárez
    University of Barcelona, Spain
  • Dr. Manel Puig
    University of Barcelona, Spain
  • Dr. Filip Meysman
    Vrije Universiteit Brussel, Belgium
  • Prof. Fabio Biscarini
    Universita di Modena e Regio Emilia, Italy
  • Dra. Marta Mas-Torrents
    Institut de Ciències de Materials de Barcelona, Spain 
  • Dra. Adrica Kyndiah
    Italian Institute of Technology, Italy 

News

Introduction to the vacant position: The Nanobioelec Group/Unit is looking for Research Assistant. The contract will be within the framework of the European Project PRINGLE, whose objective is to develop … Read more

Research Assistant at the Nanoscale bioelectrical characterization group

Introduction to the vacant position: The Nanobioelec Group/Unit is looking for Research Assistant. The contract will be within the framework of the European Project PRINGLE, whose objective is to develop … Read more

Un estudio publicado en Nature Communications determina el elemento clave en el transporte de electricidad en las llamadas bacterias-cable, abriendo las puertas a entender los secretos de seres capaces de transformar energía química en eléctrica, con gran importancia para el ecosistema marino y potencial para nuevas aplicaciones en bioelectrónica.

Descubren la causa de las extraordinarias propiedades eléctricas de las bacterias-cable

Un estudio publicado en Nature Communications determina el elemento clave en el transporte de electricidad en las llamadas bacterias-cable, abriendo las puertas a entender los secretos de seres capaces de transformar energía química en eléctrica, con gran importancia para el ecosistema marino y potencial para nuevas aplicaciones en bioelectrónica.

Investigadores del IBEC han conseguido reducir drásticamente el tiempo de procesamiento de imágenes de microscopía utilizando herramientas de aprendizaje automático. Con esta nueva técnica han obtenido, en tan solo algunos segundos, un mapa de la composición bioquímica de las células.

El aprendizaje automático aplicado a la microscopía acelera el procesamiento de imágenes

Investigadores del IBEC han conseguido reducir drásticamente el tiempo de procesamiento de imágenes de microscopía utilizando herramientas de aprendizaje automático. Con esta nueva técnica han obtenido, en tan solo algunos segundos, un mapa de la composición bioquímica de las células.

Con un nuevo método que combina microscopía de barrido de fuerzas de alta potencia y el aprendizaje automático, los investigadores del IBEC han reducido drásticamente el tiempo de procesamiento necesario para conseguir un mapa de la composición bioquímica a la nanoescala, a partir de imágenes eléctricas de células eucariotas, a tan solo unos segundos.

El aprendizaje automático reduce el tiempo de procesamiento de imágenes de microscopía de meses a solo segundos

Con un nuevo método que combina microscopía de barrido de fuerzas de alta potencia y el aprendizaje automático, los investigadores del IBEC han reducido drásticamente el tiempo de procesamiento necesario para conseguir un mapa de la composición bioquímica a la nanoescala, a partir de imágenes eléctricas de células eucariotas, a tan solo unos segundos.

Aurora Dols y Zaida Álvarez, investigadoras del Instituto de Bioingeniería de Cataluña (IBEC), reciben las prestigiosas becas Beatriu de Pinós que otorga la Generalitat de Cataluña para la incorporación de investigadores postdoctorales altamente cualificados en el sistema catalán de investigación.

Dos investigadoras del IBEC reciben la beca Beatriu de Pinós

Aurora Dols y Zaida Álvarez, investigadoras del Instituto de Bioingeniería de Cataluña (IBEC), reciben las prestigiosas becas Beatriu de Pinós que otorga la Generalitat de Cataluña para la incorporación de investigadores postdoctorales altamente cualificados en el sistema catalán de investigación.

Una colaboración conjunta entre el Instituto de Bioingeniería de Cataluña (IBEC), el Instituto de Ciencia de Materiales de Barcelona(ICMAC) y la Universidad de Manchester han logrado crear un mapa de las propiedades eléctricas de las interfaces eléctricas de biosensores orgánicos / electrolitos a nanoescala midiendo las fuerzas eléctricas locales.

Fuerzas eléctricas para caracterizar futuros dispositivos electrónicos biocompatibles

Una colaboración conjunta entre el Instituto de Bioingeniería de Cataluña (IBEC), el Instituto de Ciencia de Materiales de Barcelona(ICMAC) y la Universidad de Manchester han logrado crear un mapa de las propiedades eléctricas de las interfaces eléctricas de biosensores orgánicos / electrolitos a nanoescala midiendo las fuerzas eléctricas locales.

Investigadores del IBEC y el ICMAB desarrollan una plataforma de transistores flexibles, baratos y biocompatibles capaces de obtener un electrocardiograma de células y microtejidos durante largos periodos de tiempo. La plataforma, basada en transistores orgánicas del tipo EGOFET, también es capaz de medir el efecto de fármacos en las células cardíacas, lo que abre la puerta a diversas aplicaciones, como dispositivos sanitarios implantables.

Un equipo de investigadores desarrolla biotransistores capaces de escuchar pequeños latidos de vida

Investigadores del IBEC y el ICMAB desarrollan una plataforma de transistores flexibles, baratos y biocompatibles capaces de obtener un electrocardiograma de células y microtejidos durante largos periodos de tiempo. La plataforma, basada en transistores orgánicas del tipo EGOFET, también es capaz de medir el efecto de fármacos en las células cardíacas, lo que abre la puerta a diversas aplicaciones, como dispositivos sanitarios implantables.

Un grupo del IBEC ha recibido fondos europeos para coordinar un proyecto cuyo objetivo es formar a una nueva generación de investigadores en Microscopía de Sonda de Barrido (SPM, del inglés). Gracias a los fondos Marie Curie ITN, los diez miembros del consorcio del SPM2.0 European Training Network –ubicados en España, Francia, Austria, Reino Unido e Italia– proporcionarán a los investigadores un entrenamiento puntero y multidisciplinar en el campo de la Microscopía de Sonda de Barrido.

Entrenando a la próxima generación de expertos en microscopía avanzada

Un grupo del IBEC ha recibido fondos europeos para coordinar un proyecto cuyo objetivo es formar a una nueva generación de investigadores en Microscopía de Sonda de Barrido (SPM, del inglés). Gracias a los fondos Marie Curie ITN, los diez miembros del consorcio del SPM2.0 European Training Network –ubicados en España, Francia, Austria, Reino Unido e Italia– proporcionarán a los investigadores un entrenamiento puntero y multidisciplinar en el campo de la Microscopía de Sonda de Barrido.

Un grupo de investigación del IBEC ha revelado nuevas estrategias de supervivencia de las endosporas bacterianas utilizando la Microscopía de Fuerzas Electrostáticas (EFM) para analizar su nivel hidratación en distintas condiciones de humedad relativa.

Investigadores del IBEC utilizan la microscopía EFM para desvelar los secretos de la supervivencia de las endosporas bacterianas

Un grupo de investigación del IBEC ha revelado nuevas estrategias de supervivencia de las endosporas bacterianas utilizando la Microscopía de Fuerzas Electrostáticas (EFM) para analizar su nivel hidratación en distintas condiciones de humedad relativa.

Jobs

Introduction to the vacant position: The Nanobioelec Group is looking for a PhD student to develop his/her PhD thesis project on the modelling of organic electronic biosensors. The contract will … Read more

Predoctoral researcher at the Nanoscale bioelectrical characterization group

Introduction to the vacant position: The Nanobioelec Group is looking for a PhD student to develop his/her PhD thesis project on the modelling of organic electronic biosensors. The contract will … Read more