DONATE

Nanoscale bioelectrical characterization

ABOUT

The main goal of the Nanoscale Bioelectrical Characterization group is to develop a multiscale and multimodal (electrical, mechanical) approach to Bioelectricity, covering from the nano- to the microscale. To this end the group combines methods and techniques from Scanning Probe Microscopy, Artificial Intelligence and Organic Bioelectronics. The main objective is to contribute to develop new label-free characterization tools for Life Sciences, new nanomedical diagnosis approaches and new electronic biosensors.

Autonomous multimodal scanning probe microscopes for Life Sciences 

At present the group focuses in the development of an Autonomous Multimodal Functional Scanning Probe Microscope assisted by Artificial Intelligence for Life Sciences and Medical applications. The objective is to map the structural, electrical and mechanical properties at the nanoscale of cells, bacteria, drug nanocarriers and organic Bioelectronic devices with minimal intervention of the operator and at high throughput.  

The objective is to obtain in an autonomous way fast functional electric and mechanical nanoscale maps of Life Science samples and Organic Electronics devices in physiological conditions with minimal intervention of the operator and at high throughput. 

Initial results obtained by the group include the upgrade of the Scanning Dielectric Microscope to enable its operation in physiological buffers for living cell imaging, the development of a supervised machine learning algorithm to process Scanning Dielectric Microscopy data and provide almost instantaneously local dielectric constant maps of both eukaryotic and prokaryotic cells, and the implementation of a workflow for Scanning Dielectric Microscopy for high throughput and automatic nanoscale multimodal (electrical and mechanical) characterization. 

High throughput multimodal characterization of drug nanocarriers  

The development of novel drug nanocarriers require an exhaustive multiparametric characterization, which includes its morphology and structure, net charge, particle size distribution or phase transition temperature. These characteristics are obtained usually from different techniques. We target to obtain simultaneously and at high throughput multiparametric information on drug nanocarriers by using a single instrument, namely, the autonomous multimodal in liquid Scanning Dielectric Microscope. We aim at obtaining information on the size, sphericity, membrane wall thickness, lamellarity, Young’s modulus, stiffness, surface charge and membrane specific capacitance of drug nanocarriers, such as liposomes, polymeric nanoparticles or lipid nanoparticles. 

Interrelation of mechanical and electrical processes in living neurons 

Mechanical and electrical processes in cells and tissues can sometimes appear interrelated, as for instance, in the action potential propagation in neurons, which provokes the electrical polarization of the cell membrane and, at the same time, a change in neuron’s membrane tension. Similarly, the restructuring of the cytoskeleton of neurons, as occurring in the Alzheimer disease, can induce a change in cellular stiffness and, consequently, an improper neuron firing. We aim at investigating this interrelation by means of the multimodal in liquid Scanning Dielectric Microscope applied to living neurons. 

Unravelling the electrical conduction properties of cable bacteria 

Long-range electron conduction in cable bacteria filaments presents unusual characteristics in the biological world, exceeding by more than 6 orders of magnitude the conductivity of the best conducting protein nanowires. Electric conduction takes place through Niquel rich protein nanofibers located in the bacteria periplasm, but still many aspects of the electronic conduction in cable bacteria remain unknown. We aim at providing new insights on the conducting properties of cable bacteria by using the unique capabilities and versatility of the Scanning Dielectric Microscope. 

Novel nanoscale physical phenotyping of cancer cells 

The whole process of cancer aggression, from local growth to extravasation into blood vessels, migration, seeding into different organs and formation of metastases involves physical changes (mechanical and electrical) and their interplay with protein expression and genetic transformations. We aim at developing a high throughput nanoscale multimodal physical phenotyping method for cancer cells based on the Scanning Dielectric Microscope. Our ling term objective is to provide additional diagnostics tools to medical doctors for evaluating cancer progression and aggression. 

Structure-function relationships for materials in Organic Bioelectronics 

Organic semiconductor materials have emerged as key materials in the development of platforms (e.g. electrolyte gated transistors) for transducing and amplifying biological and biochemical signals. This fact makes them an integral part of diverse biosensing and bioelectronic devices able to sense even single molecules or to record bioelectric potentials from excitable cells. The fundamental understanding of the nanoscale electronic and ionic transport governing the operation of these materials and devices remains, however, poorly understood. We aim at providing new insights into the structure-function relationship of organic materials used in Bioelectronics with the unique capabilities of the multimodal in operando in-liquid Scanning Dielectric Microscope. 

Top: In operando in-liquid Scanning Dielectric Microscope for multimodal (structural, mechanical and electrical) nanoscale characterization of samples in electrolyte solutions. Bottom (from left to right): Topography, electric force and Young’s modulus nanoscale images of a neurite from a living neuron in physiological buffer obtained with the multimodal Scanning Dielectric Microscope. 
Left: Dielectric constant map of fixed HeLa cells obtained by processing and analysing experimental data obtained with the Scanning Dielectric Microscope in dry air environment. Total processing time was three months. Centre: 10% of the dielectric constant map used to train a neural network to quantify the Scanning Dielectric Microscopy experimental data. Right: Output of the trained neural network when applied to the Scanning Dielectric Microscopy experimental data. Computation time: three seconds. The accuracy of the Neural Network prediction is above 90%. 
Left: Topographic image of cable bacteria filament with an isolated electrically conducting protein nanofiber. Centre and Right: Topographic and Electric force image of the portion of the nanofiber highlighted on the left image obtained with the Scanning Dielectric Microscope in dry air environment. From these images one can determine the electrical conductivity of the protein nanofiber without the need to attach any microelectrode or touching physically the nanofiber. 

STAFF

Staff members:

Gabriel Gomila Lluch

Group Leader
+34 934 020 206
ggomilaibecbarcelona.eu

Former members:

Harishankar Balakrishnan | PhD Student 
Now: Post-doc, University of Munich (Germany) 
Ignacio Casuso | PhD Student 
Now: Staff Scientist, INSERM (France) 
Maria Chiara Biagi | PhD Student 
Now: In-vivo Image Analysis Scientist, AstraZenca (Spain) 
Marti Checa | PhD Student 
Now: R&D Staff scientist, Oak Ridge National Laboratory (USA) 
Martin Edwards | Postdoc 
Now: Assistant Professor, University of Arkansas (USA) 
Daniel Esteban Ferrer | PhD Student 
Now: CEO, ViR S.L. (Spain) 
Laura Fumagalli | Senior Researcher 
Now: Reader, University of Manchester (UK) 
Georg Gramse | PhD Student 
Now: Group Leader, Johannes Kepler University of Linz (Austria) 
Larisa Huetter | PhD Student 
Now: IT consultant, Rewion (Germany) 
Adrica Kyndiah | Postdoc 
Now: Senior Scientist, Instituto Italiano di Tecnologia (Italy) 
Helena Lozano | PhD Student 
Now: Project Manager, CSIC (Spain) 
Martina di Muzzio | PhD Student 
Now: Engineer PMQ, Roche (Spain) 
Jordi Otero | Postdoc 
Now: Lecturer, Universitat de Barcelona (Spain) 
Shubham Tanwar | PhD Student 
Now: Post-doc, Italian Institute of Technology (Italy) 
Romen Trujillo | PhD Student 
Now: Associate Professor, Universitat de Barcelona (Spain) 
Marc Van der Hofstadt | PhD Student 
Now: Post-doc, CNRS (France) 

PROJECTS

INTERNATIONAL PROJECTSFINANCERPI
PRINGLE · Protein Based Next Generation Electronics (2022-2026)European Commission, PathFinder OpenGabriel Gomila
SPM4.0 · Autonomous Scanning Probe Microscopy for Life Sciences and Medicine powered by Artificial IntelligenceEuropean Commission , MSCA-DN 2023Gabriel Gomila

NATIONAL PROJECTSFINANCERPI
ICREA Academia Award (2023-2027)Catalan Institution for Research and Advanced Studies (ICREA) / Generalitat de CatalunyaGabriel Gomila
Microscopio de fuerzas de barrido multiparamétrico autónomo y de alto rendimiento para aplicaciones en ciencias de la vida y medicina
(BIOMEDSPM4.0)
MICIU/AEI and FEDER, UEGabriel Gomila
SGR-Grups de recerca consolidats (SGR-Cat 2021)_GRCAGAUR / SGRGabriel Gomila
FINISHED PROJECTSFINANCERPI
SGR Grups de recerca consolidats (2017-2020)AGAUR / SGRGabriel Gomila
SPM2.0 · Scanning probe microscopies for nanoscale fast, tomographic and composition imaging (2017-2020)Marie Curie Skłodowska European Training Network (MSCA-ITN-ETN)Gabriel Gomila (Project Coordinator)
NANOMICROWAVE · Microwave Nanotechnology for Semiconductor and Life Sciences (2013-2016)MARIE CURIE – ITNGabriel Gomila
V-SMMART Nano · Volumetric Scanning Microwave Microscopy Analytical and Research Tool for Nanotechnology (2012-2016)NMP – SMEGabriel Gomila
AFM4NanoMed&Bio · European network on applications of Atomic Force Microscopy to Nanomedicine and Life SciencesEU COST Action TD1002Gabriel Gomila (Management Committee Substitute Member)
BIOWIRESENSE · Plataforma universal para la detección de biomarcadores basada en nanocables bacterianos conductores (2017-2019)MINECO, Explora CienciaGabriel Gomila
NANOELECTOMOGRAPHY· Electrical nanotomography based on scanning probe microscopy for nanomaterials and biological samples (2014-2016)MINECO (TEC2013-48344-C2-1-P)Gabriel Gomila
NANOELECTROPHYS · Scanning Electric Force Microscope for Electrophysological Recordings at the Nanoscale
(2016-2019)
MINECO (TEC2016-79156-P)
Gabriel Gomila
ICREA Academia Award (2015-2019)Catalan Institution for Research and Advanced Studies (ICREA) / Generalitat de CatalunyaGabriel Gomila
BORGES · Biosensing with ORGanic ElectronicS (2019-2022)Marie Curie Skłodowska European Training Network (MSCA-ITN-ETN)Gabriel Gomila
BIGDATASPM ·  Métodos de datos masivos aplicados a la Microscopía de Sonda de Barrido para estudios eléctricos funcionales en ciencias de la vida (2020-2023)MINECO,  Generación Conocimiento: Proyectos I+DGabriel Gomila
Correlative Electrical and Mechanical Scanning Probe Microscopy for Life Science ApplicationBeatriu de Pinós 2019/ AGAURAurora Dols

PUBLICATIONS

EQUIPMENT

  • Cypher Atomic Force Microscope (Asylum Research)
  • Nanowizard 4 Bio-Atomic Force Microscope (JPK)
  • Cervantes Atomic Force Microscope (Nanotec Electronica)
  • Easy Scan 2 Atomic Force Microscope (Nanosurf)
  • AxioImager A1m Reflection Optical Microscope (Zeiss) equipped with a AxioCam ERc5s (Zeiss)
  • CompactStat portable electrochemical interface and impedance analyzer (Ivium Technologies)
  • Palmsens 4, 8 channel Potentiostat (Palmens)
  • 2 eLockIn204 4-phase Lock-In amplifiers (Anfatec)
  • Keithley 6430 sub-femtoAmp remote sourcemeter
  • Keysight B2912A precision Source/Measure Unit, 2 channels
  • Keysight N9310A RF Signal Generator 9 kHz to 3.0 GHz
  • Computation Workstation Intel Xeon, NVIDIA RTXA5000 

COLLABORATIONS

  • Dr. Filip Meysman 
    University of Antwerp, Belgium 
  • Dra. Adrica Kyndiah 
    Italian Institute of Technology, Italy 
  • Dr. Martí Checa 
    Oak Ridge National Laboratory, USA 
  • Dr. Jordi Borrell 
    University of Barcelona, Spain 
  • Dra. Marta Mas-Torrents 
    Institut de Ciències de Materials de Barcelona, Spain 
  • Dr. Eduard Torrents 
    Institut de Bioenginyeria de Catalunya, Spain  
  • Dr. Jose Antonio del Rio 
    Institut de Bioenginyeria de Catalunya, Spain  

NEWS

Con un nuevo método que combina microscopía de barrido de fuerzas de alta potencia y el aprendizaje automático, los investigadores del IBEC han reducido drásticamente el tiempo de procesamiento necesario para conseguir un mapa de la composición bioquímica a la nanoescala, a partir de imágenes eléctricas de células eucariotas, a tan solo unos segundos.

El aprendizaje automático reduce el tiempo de procesamiento de imágenes de microscopía de meses a solo segundos

Con un nuevo método que combina microscopía de barrido de fuerzas de alta potencia y el aprendizaje automático, los investigadores del IBEC han reducido drásticamente el tiempo de procesamiento necesario para conseguir un mapa de la composición bioquímica a la nanoescala, a partir de imágenes eléctricas de células eucariotas, a tan solo unos segundos.

Aurora Dols y Zaida Álvarez, investigadoras del Instituto de Bioingeniería de Cataluña (IBEC), reciben las prestigiosas becas Beatriu de Pinós que otorga la Generalitat de Cataluña para la incorporación de investigadores postdoctorales altamente cualificados en el sistema catalán de investigación.

Dos investigadoras del IBEC reciben la beca Beatriu de Pinós

Aurora Dols y Zaida Álvarez, investigadoras del Instituto de Bioingeniería de Cataluña (IBEC), reciben las prestigiosas becas Beatriu de Pinós que otorga la Generalitat de Cataluña para la incorporación de investigadores postdoctorales altamente cualificados en el sistema catalán de investigación.

Una colaboración conjunta entre el Instituto de Bioingeniería de Cataluña (IBEC), el Instituto de Ciencia de Materiales de Barcelona(ICMAC) y la Universidad de Manchester han logrado crear un mapa de las propiedades eléctricas de las interfaces eléctricas de biosensores orgánicos / electrolitos a nanoescala midiendo las fuerzas eléctricas locales.

Fuerzas eléctricas para caracterizar futuros dispositivos electrónicos biocompatibles

Una colaboración conjunta entre el Instituto de Bioingeniería de Cataluña (IBEC), el Instituto de Ciencia de Materiales de Barcelona(ICMAC) y la Universidad de Manchester han logrado crear un mapa de las propiedades eléctricas de las interfaces eléctricas de biosensores orgánicos / electrolitos a nanoescala midiendo las fuerzas eléctricas locales.

Investigadores del IBEC y el ICMAB desarrollan una plataforma de transistores flexibles, baratos y biocompatibles capaces de obtener un electrocardiograma de células y microtejidos durante largos periodos de tiempo. La plataforma, basada en transistores orgánicas del tipo EGOFET, también es capaz de medir el efecto de fármacos en las células cardíacas, lo que abre la puerta a diversas aplicaciones, como dispositivos sanitarios implantables.

Un equipo de investigadores desarrolla biotransistores capaces de escuchar pequeños latidos de vida

Investigadores del IBEC y el ICMAB desarrollan una plataforma de transistores flexibles, baratos y biocompatibles capaces de obtener un electrocardiograma de células y microtejidos durante largos periodos de tiempo. La plataforma, basada en transistores orgánicas del tipo EGOFET, también es capaz de medir el efecto de fármacos en las células cardíacas, lo que abre la puerta a diversas aplicaciones, como dispositivos sanitarios implantables.

Un grupo del IBEC ha recibido fondos europeos para coordinar un proyecto cuyo objetivo es formar a una nueva generación de investigadores en Microscopía de Sonda de Barrido (SPM, del inglés). Gracias a los fondos Marie Curie ITN, los diez miembros del consorcio del SPM2.0 European Training Network –ubicados en España, Francia, Austria, Reino Unido e Italia– proporcionarán a los investigadores un entrenamiento puntero y multidisciplinar en el campo de la Microscopía de Sonda de Barrido.

Entrenando a la próxima generación de expertos en microscopía avanzada

Un grupo del IBEC ha recibido fondos europeos para coordinar un proyecto cuyo objetivo es formar a una nueva generación de investigadores en Microscopía de Sonda de Barrido (SPM, del inglés). Gracias a los fondos Marie Curie ITN, los diez miembros del consorcio del SPM2.0 European Training Network –ubicados en España, Francia, Austria, Reino Unido e Italia– proporcionarán a los investigadores un entrenamiento puntero y multidisciplinar en el campo de la Microscopía de Sonda de Barrido.

Un grupo de investigación del IBEC ha revelado nuevas estrategias de supervivencia de las endosporas bacterianas utilizando la Microscopía de Fuerzas Electrostáticas (EFM) para analizar su nivel hidratación en distintas condiciones de humedad relativa.

Investigadores del IBEC utilizan la microscopía EFM para desvelar los secretos de la supervivencia de las endosporas bacterianas

Un grupo de investigación del IBEC ha revelado nuevas estrategias de supervivencia de las endosporas bacterianas utilizando la Microscopía de Fuerzas Electrostáticas (EFM) para analizar su nivel hidratación en distintas condiciones de humedad relativa.

JOBS