Staff member

Anabel-Lise Le Roux
Staff member publications

Phuyal, Santosh, Djaerff, Elena, Le Roux, Anabel‐Lise, Baker, Martin J, Fankhauser, Daniela, Mahdizadeh, Sayyed Jalil, Reiterer, Veronika, Parizadeh, Amirabbas, Felder, Edward, Kahlhofer, Jennifer C, Teis, David, Kazanietz, Marcelo G, Geley, Stephan, Eriksson, Leif, Roca‐Cusachs, Pere, Farhan, Hesso, (2022). Mechanical strain stimulates COPII-dependent secretory trafficking via Rac1 Embo Journal 41, e110596

Le Roux, Anabel-Lise, Tozzi, Caterina, Walani, Nikhil, Quiroga, Xarxa, Zalvidea, Dobryna, Trepat, Xavier, Staykova, Margarita, Arroyo, Marino, Roca-Cusachs, Pere, (2021). Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization Nature Communications 12, 6550

In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.

JTD Keywords: aggregation, amphiphysin, domains, vesicles, Article, Cell, Cell component, Curvature, Detection method, Geomembrane, Mechanotransduction, Membrane, Molecular analysis, Phase transition, Physiology, Protein, Self organization

Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat

Tozzi C, Walani N, Le Roux AL, Roca-Cusachs P, Arroyo M, (2021). A theory of ordering of elongated and curved proteins on membranes driven by density and curvature Soft Matter 17, 3367-3379

Cell membranes interact with a myriad of curvature-active proteins that control membrane morphology and are responsible for mechanosensation and mechanotransduction. Some of these proteins, such as those containing BAR domains, are curved and elongated, and hence may adopt different states of orientational order, from isotropic to maximize entropy to nematic as a result of crowding or to adapt to the curvature of the underlying membrane. Here, extending the classical work of Onsager for ordering in hard particle systems and that of [E. S. Nascimento et al., Phys. Rev. E, 2017, 96, 022704], we develop a mean-field density functional theory to predict the orientational order and evaluate the free energy of ensembles of elongated and curved objects on curved membranes. This theory depends on the microscopic properties of the particles and explains how a density-dependent isotropic-to-nematic transition is modified by anisotropic curvature. We also examine the coexistence of isotropic and nematic phases. This theory predicts how ordering depends on geometry but we assume here that the geometry is fixed. It also lays the ground to understand the interplay between membrane reshaping by BAR proteins and molecular order, examined by [Le Roux et al., submitted, 2020]. This journal is


Roux, Anabel-Lise Lee, Quiroga, Xarxa, Walani, Nikhil, Arroyo, Marino, Roca-Cusachs, Pere, (2019). The plasma membrane as a mechanochemical transducer Philosophical Transactions of the Royal Society B: Biological Sciences 374, (1779), 20180221

Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment.

JTD Keywords: Plasma membrane, Mechanotransduction, Membrane tension, Mechanosensor

Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., Oria, R., Kechagia, J. Z., Rico-Lastres, P., Le Roux, A. L., Shanahan, C. M., Trepat, X., Navajas, D., Garcia-Manyes, S., Roca-Cusachs, P., (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores Cell 171, (6), 1397-1410

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Force-dependent changes in nuclear pores control protein access to the nucleus.

JTD Keywords: Atomic force microscopy, Hippo pathway, Mechanosensing, Mechanotransduction, Molecular mechanical stability, Nuclear mechanics, Nuclear pores, Nuclear transport, Rigidity sensing, Transcription regulation

Pontes, B., Monzo, P., Gole, L., Le Roux, A. L., Kosmalska, A. J., Tam, Z. Y., Luo, W., Kan, S., Viasnoff, V., Roca-Cusachs, P., Tucker-Kellogg, L., Gauthier, N. C., (2017). Membrane tension controls adhesion positioning at the leading edge of cells Journal of Cell Biology , 216, (9), 2959-2977

Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.