DONATE

Publications

by Keyword: proteins

Pankratov D, Hidalgo Martinez S, Karman C, Gerzhik A, Gomila G, Trashin S, Boschker HTS, Geelhoed JS, Mayer D, De Wael K, JR Meysman F, (2024). The organo-metal-like nature of long-range conduction in cable bacteria Bioelectrochemistry 157, 108675

Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm−1; range: 2 to 564 S cm−1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies. © 2024 The Authors

JTD Keywords: 'current, Activation energy, Bacteria, Bioelectronic, Bioelectronics, Cable bacteria, Cables, Centimeter-scale, Electrochemical impedance spectroscopy, Electrochemical-impedance spectroscopies, Electron transport, Electron transport properties, Long-distance electron transport, Nickel, Nickel containing, Protein conductivity, Protein fibers, Proteins


Dhawan, U, Williams, JA, Windmill, JFC, Childs, P, Gonzalez-Garcia, C, Dalby, MJ, Salmeron-Sanchez, M, (2024). Engineered Surfaces That Promote Capture of Latent Proteins to Facilitate Integrin-Mediated Mechanical Activation of Growth Factors Advanced Materials , 2310789

Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-beta 1) is bound. rLTBP1 facilitates the interaction of LAP with integrin beta 1 and the subsequent mechanically driven release of TGF-beta 1 to stimulate canonical TGF-beta 1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo. An osteogenic platform that functions by capturing inactive growth factor molecules is engineered to overcome conventional challenges associated with the use of active growth factors. The platform triggers capture of inactive transforming growth factor beta-1 for its subsequent integrin-mediated activation which activates osteogenic downstream signaling in vitro and fully repairs critical-sized bone defect in vivo. image

JTD Keywords: Bone, Bone defect, Bone regeneration, Cell proliferation, Cells, Chemical activation, Defects, Differentiation, Fibronectin, Growth factor, Growth factors, Integrins, Latency associated peptides, Ltbp1, Osteogenic, Recombinant proteins, Release, Repair, Tgf-beta, Tgf-β1, Transforming growth factors


Cassani, M, Fernandes, S, Cruz, JOD, Durikova, H, Vrbsky, J, Patocka, M, Hegrova, V, Klimovic, S, Pribyl, J, Debellis, D, Skladal, P, Cavalieri, F, Caruso, F, Forte, G, (2024). YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles Advanced Science 11, e2302965

Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

JTD Keywords: cancer treatment, cells, differentiation, hippo pathway, mechanics, mechanobiology, mechanotransduction, nanoparticles, progression, protein, resistance, yap-signaling, yap/taz, Adaptor proteins, signal transducing, Bio-nano interaction, Bio-nano interactions, Breast cancer cells, Cancer cells, Cancer treatment, Cells, Cellular therapeutics, Cellular uptake, Chemotherapy, Cytology, Diseases, Extracellular-matrix, Human, Humans, Mechano-biology, Mechanobiology, Metabolism, Nanoparticle, Nanoparticle interaction, Nanoparticles, Physiology, Protein serine threonine kinase, Protein serine-threonine kinases, Protein signaling, Signal transducing adaptor protein, Signal transduction, Therapeutic effects, Triple negative breast cancer, Triple negative breast neoplasms, Triple-negative breast cancers, Yap-signaling, Yes-associated protein-signaling


Englert, J, Witzdam, L, Söder, D, Garay-Sarmiento, M, Joseph, A, Wagner, AM, Rodriguez-Emmenegger, C, (2023). Synthetic Evolution of a Supramolecular Harpooning Mechanism to Immobilize Vesicles at Antifouling Interfaces Macromolecular Chemistry And Physics 224, 2300306

The immobilization of vesicles has been conceptualized as a method to functionalize biointerfaces. However, the preservation of their integrity post immobilization remains a considerable challenge. Interfacial interactions can cause vesicle rupture upon close surface contact and non-specific protein adsorption impairing surface functions. To date, immobilization of vesicles has relied solely on either entrapment or prior modification of vesicles, both of which require laborious preparation and limit their applications. This work develops a bioinspired strategy to pin vesicles without prior modification while preserving their intact shape. This work introduces antifouling diblock copolymers and ultrathin surface-attached hydrogels containing a brush-like interface consisting of a bottle brush copolymer of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-(3-methacrylamidopropyl)-N,N-dimethyldodecan-1-aminiumiodide (C12+). The presence of positive charges generates an attractive force that pulls vesicles toward the surface. At the surface, the amphiphilic properties of the combs facilitate their insertion into the membrane, mimicking the harpooning mechanism observed in antimicrobial peptides. Importantly, the antifouling poly(HPMA) backdrop serves to safeguard the vesicles by preventing deformation and breakage. Using a combination of thermodynamic analysis, surface plasmon resonance, and confocal laser scanning microscopy, this work demonstrates the efficiency of this biomimetic system to capture vesicles while maintaining an antifouling interface necessary for bioapplications. This work presents a novel supramolecular approach that combines three key elements: long-range attraction, vesicle pinning, and short-range repulsion to attract and harpoon vesicles, while protecting them at the surface. This work envisions these coatings as universal and biocompatible platforms that can be used not only to study vesicle interactions, but also as tools for biomedical applications.image

JTD Keywords: Antifouling coatings, Coatings, Delivery, Extracellular vesicles, Fabrication, Hydrogel, Janus dendrimers, Lipid vesicles, Liposomes, Membrane insertion, Polymer brushes, Proteins, Surface-energy components, Ultrathin surface-attached hydrogels, Vesicle pinning


Kechagia, Z, Sáez, P, Gómez-González, M, Canales, B, Viswanadha, S, Zamarbide, M, Andreu, I, Koorman, T, Beedle, AEM, Elosegui-Artola, A, Derksen, PWB, Trepat, X, Arroyo, M, Roca-Cusachs, P, (2023). The laminin-keratin link shields the nucleus from mechanical deformation and signalling Nature Materials 22, 1409-1420

The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.© 2023. The Author(s).

JTD Keywords: actin, cell migration, filaments, force transmission, localization, membrane, motility, proteins, yap, Integrin alpha-6-beta-4


Pedraz, L, Torrents, E, (2023). An easy method for quantification of anaerobic and microaerobic gene expression with fluorescent reporter proteins Biotechniques 75, 250-255

Fluorescent proteins, such as green fluorescent proteins, are invaluable tools for detecting and quantifying gene expression in high-throughput reporter gene assays. However, they introduce significant inaccuracies in studies involving microaerobiosis or anaerobiosis, as oxygen is required for the maturation of these proteins' chromophores. In this study, the authors highlight the errors incurred by using fluorescent proteins under limited oxygenation by comparing standard fluorescence-based reporter gene assays to quantitative real-time PCR data in the study of a complex oxygen-regulated gene network. Furthermore, a solution to perform quantification of anaerobic and microaerobic gene expression with fluorescent reporter proteins using a microplate reader with an oxygen control system and applying pulses of full oxygenation before fluorescence measurements is provided.

JTD Keywords: fluorescent proteins, gene expression, gfp, microaerobiosis, promoters, reporter gene assay, transcriptional fusion, Anaerobiosis, Fluorescent proteins, Gene expression, Gfp, Microaerobiosis, Pseudomonas-aeruginosa, Reporter gene assay, Transcriptional fusion


Prischich, D, Camarero, N, del Dedo, JE, Cambra-Pellejà, M, Prat, J, Nevola, L, Martín-Quirós, A, Rebollo, E, Pastor, L, Giralt, E, Geli, MI, Gorostiza, P, (2023). Light-dependent inhibition of clathrin-mediated endocytosis in yeast unveils conserved functions of the AP2 complex Iscience 26, 107899

Clathrin-mediated endocytosis (CME) is an essential cellular process, conserved among eukaryotes. Yeast constitutes a powerful genetic model to dissect the complex endocytic machinery, yet there is a lack of specific pharmacological agents to interfere with CME in these organisms. TL2 is a light-regulated peptide inhibitor targeting the AP2-β-adaptin/β-arrestin interaction and that can photocontrol CME with high spatiotemporal precision in mammalian cells. Here, we study endocytic protein dynamics by live-cell imaging of the fluorescently tagged coat-associated protein Sla1-GFP, demonstrating that TL2 retains its inhibitory activity in S. cerevisiae spheroplasts. This is despite the β-adaptin/β-arrestin interaction not being conserved in yeast. Our data indicate that the AP2 α-adaptin is the functional target of activated TL2. We identified as interacting partners for the α-appendage, the Eps15 and epsin homologues Ede1 and Ent1. This demonstrates that endocytic cargo loading and sensing can be executed by conserved molecular interfaces, regardless of the proteins involved.© 2023 The Author(s).

JTD Keywords: adapters, alpha-appendage, azobenzene, cross-linker, mechanism, peptides, proteins, receptor, trafficking, Actin polymerization, Biochemistry, Biological sciences, Cell biology, Molecular biology, Natural sciences


López-Ortiz, M, Zamora, RA, Giannotti, MI, Gorostiza, P, (2023). The Protein Matrix of Plastocyanin Supports Long-Distance Charge Transport with Photosystem I and the Copper Ion Regulates Its Spatial Span and Conductance Acs Nano 17, 20334-20344

Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated with Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.

JTD Keywords: azurin, binding, blinking, crystal-structure, cupredoxin, current distance spectroscopy, electrochemical tunneling microscopy, proteinconductance, reduction, single metalloprotein, single molecule measurements, site, spectroscopy, Blinking, Cupredoxin, Current distance spectroscopy, Electrochemical tunneling microscopy, Interprotein electron transfer, Protein conductance, Single molecule measurements, State electron-transport


Macedo, MH, Torras, N, García-Díaz, M, Barrias, C, Sarmento, B, Martínez, E, (2023). The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model Biomaterials Advances 153, 213564

The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: 3d architecture, alkaline-phosphatase, caco-2 cells, culture, drug development, efflux proteins, gene-expression, human-colon, intestinal absorption, intestinal models, microenvironment, paracellular transport, permeability, photopolymerization, villi, 3d architecture, 3d bioprinting, Drug development, In-vitro, Intestinal absorption, Intestinal models, Photopolymerization, Villi


Quiroga, X, Walani, N, Disanza, A, Chavero, A, Mittens, A, Tebar, F, Trepat, X, Parton, RG, Geli, MI, Scita, G, Arroyo, M, Le Roux, AL, Roca-Cusachs, P, (2023). A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale Elife 12, e72316

As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.© 2023, Quiroga et al.

JTD Keywords: arp2/3 complex, bar, bar proteins, cdc42, cells, domain, human, irsp53, membrane biophysics, mouse, proteins, rac, tension, Actin polymerization, Bar proteins, Cell biology, Human, Mechanobiology, Membrane biophysics, Mouse, Physics of living systems


Qi, C, Gutierrez, SS, Lavriha, P, Othman, A, Lopez-Pigozzi, D, Bayraktar, E, Schuster, D, Picotti, P, Zamboni, N, Bortolozzi, M, Gervasio, FL, Korkhov, VM, (2023). Structure of the connexin-43 gap junction channel in a putative closed state Elife 12, RP87616

Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 Å resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state.© 2023, Qi, Acosta Gutierrez et al.

JTD Keywords: cryo-em, dehydroepiandrosterone dhea, expression, gap junction channel, gene, gja1 mutations, hemichannel, membrane protein, phenotype, protein, structure, system, visualization, Biochemistry, Chemical biology, Connexin-43, Cryo-em, Gap junction channel, Hemichannel, Human, Membrane protein, Molecular biophysics, Oculodentodigital dysplasia, Structural biology, Structure


Milenkovic, S, Wang, JJ, Acosta-Gutierrez, S, Winterhalter, M, Ceccarelli, M, Bodrenko, IV, (2023). How the physical properties of bacterial porins match environmental conditions Physical Chemistry Chemical Physics 25, 12712-12722

Despite the high homology of OmpF and OmpC, the internally folded loop responds differently to temperature increase.

JTD Keywords: diffusion, mechanism, molecules, nanopores, permeability, proteins, rules, simulations, transport, Membrane


Overby, SJ, Cerro-Herreros, E, Espinosa-Espinosa, J, González-Martínez, I, Moreno, N, Fernández-Costa, JM, Balaguer-Trias, J, Ramón-Azcón, J, Pérez-Alonso, M, Moller, T, Llamusí, B, Artero, R, (2023). BlockmiR AONs as Site-Specific Therapeutic MBNL Modulation in Myotonic Dystrophy 2D and 3D Muscle Cells and HSALR Mice Pharmaceutics 15, 1118

The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.

JTD Keywords: antisense oligonucleotides, aon, blockmir, brain, expression, genes, mbnl, mir-218, mir-23b, mirna, muscleblind, myotonic dystrophy 1, phenotypes, proteins, type-1, Messenger-rna, Muscleblind, Myotonic dystrophy 1


Pintado-Grima, C, Santos, J, Iglesias, V, Manglano-Artuñedo, Z, Pallarès, I, Ventura, S, (2023). Exploring cryptic amyloidogenic regions in prion-like proteins from plants Frontiers In Plant Science 13, 1060410

Prion-like domains (PrLDs) are intrinsically disordered regions (IDRs) of low sequence complexity with a similar composition to yeast prion domains. PrLDs-containing proteins have been involved in different organisms' regulatory processes. Regions of moderate amyloid propensity within IDRs have been shown to assemble autonomously into amyloid fibrils. These sequences tend to be rich in polar amino acids and often escape from the detection of classical bioinformatics screenings that look for highly aggregation-prone hydrophobic sequence stretches. We defined them as cryptic amyloidogenic regions (CARs) and recently developed an integrated database that collects thousands of predicted CARs in IDRs. CARs seem to be evolutionary conserved among disordered regions because of their potential to stablish functional contacts with other biomolecules. Here we have focused on identifying and characterizing CARs in prion-like proteins (pCARs) from plants, a lineage that has been poorly studied in comparison with other prionomes. We confirmed the intrinsic amyloid potential for a selected pCAR from Arabidopsis thaliana and explored functional enrichments and compositional bias of pCARs in plant prion-like proteins.Copyright © 2023 Pintado-Grima, Santos, Iglesias, Manglano-Artuñedo, Pallarès and Ventura.

JTD Keywords: aggregation, aromatic residues, bioinformatics, domains, functional interactions, identify proteins, plants, prediction, prion-like domains, q/n-rich, regulator, sup35, yeast, Bioinformatics, Cryptic amyloidogenic regions, Functional interactions, Plants, Prion-like domains, Rna-binding proteins


Ferrer, I, Andrés-Benito, P, Carmona, M, del Rio, JA, (2022). Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice International Journal Of Molecular Sciences 23, 15940

Heterozygous hTau mice were used for the study of tau seeding. These mice express the six human tau isoforms, with a high predominance of 3Rtau over 4Rtau. The following groups were assessed: (i) non-inoculated mice aged 9 months (n = 4); (ii) Alzheimer's Disease (AD)-inoculated mice (n = 4); (iii) Globular Glial Tauopathy (GGT)-inoculated mice (n = 4); (iv) Pick's disease (PiD)-inoculated mice (n = 4); (v) control-inoculated mice (n = 4); and (vi) inoculated with vehicle alone (n = 2). AD-inoculated mice showed AT8-immunoreactive neuronal pre-tangles, granular aggregates, and dots in the CA1 region of the hippocampus, dentate gyrus (DG), and hilus, and threads and dots in the ipsilateral corpus callosum. GGT-inoculated mice showed unique or multiple AT8-immunoreactive globular deposits in neurons, occasionally extended to the proximal dendrites. PiD-inoculated mice showed a few loose pre-tangles in the CA1 region, DG, and cerebral cortex near the injection site. Coiled bodies were formed in the corpus callosum in AD-inoculated mice, but GGT-inoculated mice lacked globular glial inclusions. Tau deposits in inoculated mice co-localized active kinases p38-P and SAPK/JNK-P, thus suggesting active phosphorylation of the host tau. Tau deposits were absent in hTau mice inoculated with control homogenates and vehicle alone. Deposits in AD-inoculated hTau mice contained 3Rtau and 4Rtau; those in GGT-inoculated mice were mainly stained with anti-4Rtau antibodies, but a small number of deposits contained 3Rtau. Deposits in PiD-inoculated mice were stained with anti-3Rtau antibodies, but rare neuronal, thread-like, and dot-like deposits showed 4Rtau immunoreactivity. These findings show that tau strains produce different patterns of active neuronal seeding, which also depend on the host tau. Unexpected 3Rtau and 4Rtau deposits after inoculation of homogenates from 4R and 3R tauopathies, respectively, suggests the regulation of exon 10 splicing of the host tau during the process of seeding, thus modulating the plasticity of the cytoskeleton.

JTD Keywords: alzheimer's disease (ad), alzheimers-disease, brain, corticobasal degeneration, globular glial tauopathy (ggt), htau, isoforms, pathological tau, pick's disease (pid), picks-disease, propagation, protein, seeding, tau splicing, tauopathy, Alzheimer’s disease (ad), Globular glial tauopathy (ggt), Htau, Paired helical filaments, Pick’s disease (pid), Seeding, Tau, Tau splicing


Joseph, A, Wagner, AM, Garay-Sarmiento, M, Aleksanyan, M, Haraszti, T, Söder, D, Georgiev, VN, Dimova, R, Percec, V, Rodriguez-Emmenegger, C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, e2206288

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes


Seuma, M, Lehner, B, Bolognesi, B, (2022). An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation Nature Communications 13, 7084

Multiplexed assays of variant effects (MAVEs) guide clinical variant interpretation and reveal disease mechanisms. To date, MAVEs have focussed on a single mutation type-amino acid (AA) substitutions-despite the diversity of coding variants that cause disease. Here we use Deep Indel Mutagenesis (DIM) to generate a comprehensive atlas of diverse variant effects for a disease protein, the amyloid beta (Aβ) peptide that aggregates in Alzheimer's disease (AD) and is mutated in familial AD (fAD). The atlas identifies known fAD mutations and reveals that many variants beyond substitutions accelerate Aβ aggregation and are likely to be pathogenic. Truncations, substitutions, insertions, single- and internal multi-AA deletions differ in their propensity to enhance or impair aggregation, but likely pathogenic variants from all classes are highly enriched in the polar N-terminal region of Aβ. This comparative atlas highlights the importance of including diverse mutation types in MAVEs and provides important mechanistic insights into amyloid nucleation.© 2022. The Author(s).

JTD Keywords: amyloid-beta(1-42), determinants, disease, mutants, protein, secondary nucleation, Atomic-resolution structure


Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence


Duch, P, Diaz-Valdivia, N, Ikemori, R, Gabasa, M, Radisky, ES, Arshakyan, M, Gea-Sorli, S, Mateu-Bosch, A, Bragado, P, Carrasco, JL, Mori, H, Ramirez, J, Teixido, C, Reguart, N, Fillat, C, Radisky, DC, Alcaraz, J, (2022). Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma Matrix Biology 111, 207-225

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an important regulator of extracellular matrix turnover that has been traditionally regarded as a potential tumor suppressor owing to its inhibitory effects of matrix metal-loproteinases. Intriguingly, this interpretation has been challenged by the consistent observation that increased expression of TIMP-1 is associated with poor prognosis in virtually all cancer types including lung cancer, supporting a tumor-promoting function. However, how TIMP-1 is dysregulated within the tumor micro-environment and how it drives tumor progression in lung cancer is poorly understood. We analyzed the expression of TIMP-1 and its cell surface receptor CD63 in two major lung cancer subtypes: lung adenocarci-noma (ADC) and squamous cell carcinoma (SCC), and defined the tumor-promoting effects of their interac-tion. We found that TIMP-1 is aberrantly overexpressed in tumor-associated fibroblasts (TAFs) in ADC compared to SCC. Mechanistically, TIMP-1 overexpression was mediated by the selective hyperactivity of the pro-fibrotic TGF-61/SMAD3 pathway in ADC-TAFs. Likewise, CD63 was upregulated in ADC compared to SCC cells. Genetic analyses revealed that TIMP-1 secreted by TGF-61-activated ADC-TAFs is both nec-essary and sufficient to enhance growth and invasion of ADC cancer cells in culture, and that tumor cell expression of CD63 was required for these effects. Consistently, in vivo analyses revealed that ADC cells co-injected with fibroblasts with reduced SMAD3 or TIMP-1 expression into immunocompromised mice attenu-ated tumor aggressiveness compared to tumors bearing parental fibroblasts. We also found that high TIMP1 and CD63 mRNA levels combined define a stronger prognostic biomarker than TIMP1 alone. Our results identify an excessive stromal TIMP-1 within the tumor microenvironment selectively in lung ADC, and implicate it in a novel tumor-promoting TAF-carcinoma crosstalk, thereby pointing to TIMP-1/CD63 interaction as a novel therapeutic target in lung cancer. (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

JTD Keywords: cancer-associated fibroblast, cd63, fibrosis, smad3, tgf-β1, timp-1, Angiogenesis, Cancer cells, Cancer-associated fibroblast, Cd63, Expression, Fibrosis, Hepatocellular-carcinoma, Metalloproteinases, Nintedanib, Prognostic-significance, Protein, Smad3, Squamous-cell carcinoma, Tgf-? 1, Tgf-β1, Timp-1, Tissue inhibitor, Tumor microenvironment


Astro, V, Ramirez-Calderon, G, Pennucci, R, Caroli, J, Saera-Vila, A, Cardona-Londono, K, Forastieri, C, Fiacco, E, Maksoud, F, Alowaysi, M, Sogne, E, Falqui, A, Gonzalez, F, Montserrat, N, Battaglioli, E, Mattevi, A, Adamo, A, (2022). Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism Iscience 25, 104665

The histone demethylase KDM1A is a multi- faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A(-/-) hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a(-/-) hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells.

JTD Keywords: cell biology, molecular mechanism of gene regulation, omics, Bhlh transcription factor, Corest, Differentiation, Dna, Embryonic stem-cells, Heart, Lsd1, Phosphorylation, Proteins, Stem cells research, Swirm domain


Jain, A, Calo, A, Barcelo, D, Kumar, M, (2022). Supramolecular systems chemistry through advanced analytical techniques Analytical And Bioanalytical Chemistry 414, 5105-5119

Supramolecular chemistry is the quintessential backbone of all biological processes. It encompasses a wide range from the metabolic network to the self-assembled cytoskeletal network. Combining the chemical diversity with the plethora of functional depth that biological systems possess is a daunting task for synthetic chemists to emulate. The only route for approaching such a challenge lies in understanding the complex and dynamic systems through advanced analytical techniques. The supramolecular complexity that can be successfully generated and analyzed is directly dependent on the analytical treatment of the system parameters. In this review, we illustrate advanced analytical techniques that have been used to investigate various supramolecular systems including complex mixtures, dynamic self-assembly, and functional nanomaterials. The underlying theme of such an overview is not only the exceeding detail with which traditional experiments can be probed but also the fact that complex experiments can now be attempted owing to the analytical techniques that can resolve an ensemble in astounding detail. Furthermore, the review critically analyzes the current state of the art analytical techniques and suggests the direction of future development. Finally, we envision that integrating multiple analytical methods into a common platform will open completely new possibilities for developing functional chemical systems.

JTD Keywords: analytical techniques, dynamic self-assembly, high-speed afm, liquid cell tem, Analytical technique, Analytical techniques, Biological process, Chemical analysis, Chemical diversity, Complex networks, Cytoskeletal network, Dynamic self-assembly, High-speed afm, Hydrogels, In-situ, Liquid cell tem, Metabolic network, Microscopy, Nanoscale, Proteins, Self assembly, Supramolecular chemistry, Supramolecular systems, System chemistry, Systems chemistry


Wagner, AM, Eto, H, Joseph, A, Kohyama, S, Haraszti, T, Zamora, RA, Vorobii, M, Giannotti, MI, Schwille, P, Rodriguez-Emmenegger, C, (2022). Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria Advanced Materials 34, 2202364

The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.

JTD Keywords: bacterial cell division, bottom-up synthetic biology, dendrimersomes, dynamic min patterns, ftsz assembly, Bacterial cell division, Bottom-up synthetic biology, Dendrimersomes, Dynamic min patterns, Dynamics, Ftsz assembly, Ftsz filaments, Mind, Organization, Pole oscillation, Polymersome membranes, Proteins, Rapid pole, Synthetic cells, Vesicles


Comelles, J, Castillo-Fernández, O, Martínez, E, (2022). How to Get Away with Gradients Advances In Experimental Medicine And Biology 1379, 31-54

Biomolecular gradients are widely present in multiple biological processes. Historically they were reproduced in vitro by using micropipettes, Boyden and Zigmond chambers, or hydrogels. Despite the great utility of these setups in the study of gradient-related problems such as chemotaxis, they face limitations when trying to translate more complex in vivo-like scenarios to in vitro systems. In the last 20 years, the advances in manufacturing of micromechanical systems (MEMS) had opened the possibility of applying this technology to biology (BioMEMS). In particular, microfluidics has proven extremely efficient in setting-up biomolecular gradients which are stable, controllable, reproducible and at length scales that are relevant to cells. In this chapter, we give an overview of different methods to generate molecular gradients using microfluidics, then we discuss the different steps of the pipeline to fabricate a gradient generator microfluidic device, and at the end, we show an application example of the fabrication of a microfluidic device that can be used to generate a surface-bound biomolecular gradient.© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

JTD Keywords: biomems, gradient, microfluidics, model, nanotechnology, proteins, Biomems, Gradient, Mechanisms, Microfabrication, Microfluidics, Nanotechnology


Andreu, I, Granero-Moya, I, Chahare, NR, Clein, K, Molina-Jordan, M, Beedle, AEM, Elosegui-Artola, A, Abenza, JF, Rossetti, L, Trepat, X, Raveh, B, Roca-Cusachs, P, (2022). Mechanical force application to the nucleus regulates nucleocytoplasmic transport Nature Cell Biology 24, 896-905

Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than for facilitated diffusion. Owing to this differential effect, force leads to the translocation of cargoes into or out of the nucleus within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, probably operating in parallel with others, with potential applicability across signalling pathways.; Andreu et al. show that force regulates nucleocytoplasmic transport by weakening the permeability barrier of nuclear pore complexes, affecting passive and facilitated diffusion in different ways.

JTD Keywords: Activation, Inhibitor, Matrix, Mechanotransduction, Nesprins, Nucleoporins, Permeability barrier, Pore complex, Proteins, Transmission


Marti, D, Martin-Martinez, E, Torras, J, Betran, O, Turon, P, Aleman, C, (2022). In silico study of substrate chemistry effect on the tethering of engineered antibodies for SARS-CoV-2 detection: Amorphous silica vs gold Colloids And Surfaces B-Biointerfaces 213, 112400

The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors. © 2022 The Authors

JTD Keywords: amorphous silica, antibody immobilization, enzyme, gol d, gold, immobilization, immunosensor, molecu l a r dynamics, molecular dynamics, protein adsorption, sars-cov-2 immunosensor, simulations, spike protein, surface interactions, target, vaccine, Amorphous silica, Antibodies, Antibody engineering, Antibody immobilization, Antibody structure, Article, Chemical detection, Computer model, Controlled study, Dihedral angle, Gold, In-silico, Molecular dynamics, Molecular levels, Molecular-dynamics, Nonhuman, Property, Sars, Sars-cov-2 immunosensor, Severe acute respiratory syndrome coronavirus 2, Silica, Silico studies, Silicon dioxide, Solid substrates, Structure analysis, Substrate chemistry, Substrates, Van der waals forces, Virus detection


Montero, J, Haq, R, (2022). Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics Cancer Discovery 12, 1217-1232

A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the anti apoptotic BCL2 antagonist venetoclax has fi nally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. Signifi cance: Targeting antiapoptotic family members has proven effi cacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.

JTD Keywords: Anti-apoptotic mcl-1, Bcl-x-l, Bim expression, Chemotherapy sensitivity, Combination strategies, Family proteins, Multiple-myeloma, Oblimersen sodium, Phase-i, Venetoclax resistance


Marte, L, Boronat, S, Barrios, R, Barcons-Simon, A, Bolognesi, B, Cabrera, M, Ayté, J, Hidalgo, E, (2022). Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects International Journal Of Molecular Sciences 23, 3950

Many neurodegenerative disorders display protein aggregation as a hallmark, Huntingtin and TDP-43 aggregates being characteristic of Huntington disease and amyotrophic lateral sclerosis, respectively. However, whether these aggregates cause the diseases, are secondary by-products, or even have protective effects, is a matter of debate. Mutations in both human proteins can modulate the structure, number and type of aggregates, as well as their toxicity. To study the role of protein aggregates in cellular fitness, we have expressed in a highly tractable unicellular model different variants of Huntingtin and TDP-43. They each display specific patterns of aggregation and toxicity, even though in both cases proteins have to be very highly expressed to affect cell fitness. The aggregation properties of Huntingtin, but not of TDP-43, are affected by chaperones such as Hsp104 and the Hsp40 couple Mas5, suggesting that the TDP-43, but not Huntingtin, derivatives have intrinsic aggregation propensity. Importantly, expression of the aggregating form of Huntingtin causes a significant extension of fission yeast lifespan, probably as a consequence of kidnapping chaperones required for maintaining stress responses off. Our study demonstrates that in general these prion-like proteins do not cause toxicity under normal conditions, and in fact they can protect cells through indirect mechanisms which up-regulate cellular defense pathways. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: aggregation, antioxidant, degradation, features, fission yeast, gene, huntingtin, neurodegenerative diseases, pap1, polyglutamine toxicity, protein aggregation, proteins, stress, tdp-43, Amyotrophic-lateral-sclerosis, Chaperone, Chemistry, Dna binding protein, Dna-binding proteins, Fission yeast, Genetics, Human, Humans, Huntingtin, Metabolism, Molecular chaperones, Neurodegenerative diseases, Prion, Prions, Protein aggregate, Protein aggregates, Protein aggregation, Schizosaccharomyces, Tdp-43


Narciso, M, Ulldemolins, A, Junior, C, Otero, J, Navajas, D, Farré, R, Gavara, N, Almendros, I, (2022). Novel Decellularization Method for Tissue Slices Frontiers In Bioengineering And Biotechnology 10, 832178

Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies. Copyright © 2022 Narciso, Ulldemolins, Júnior, Otero, Navajas, Farré, Gavara and Almendros.

JTD Keywords: biocompatibility, bioscaffold recellularization, decellularization, extracellular matrix, flow, impact, lung, scaffolds, tissue slices, Ammonia, Bio-scaffolds, Biocompatibility, Biological organs, Bioscaffold recellularization, Cell removal, Cells, Collagen, Cytology, Decellularization, Dna, Dna signals, Elastin, Extracellular matrices, Extracellular matrix, Extracellular-matrix, Glycoproteins, Laminin, Lung, Mammals, Recellularization, Scaffolds (biology), Sodium deoxycholate, Sulfur compounds, Tissue, Tissue slice, Tissue slices


Hüttener, M, Hergueta, J, Bernabeu, M, Prieto, A, Aznar, S, Merino, S, Tomás, J, Juárez, A, (2022). Roles of Proteins Containing Immunoglobulin-Like Domains in the Conjugation of Bacterial Plasmids Msphere 7, e00978-21

Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid.

JTD Keywords: antimicrobial resistance, bacterial ig-like proteins, bacterial lg-like proteins, chromosomal genes, identification, inca/c, mutational analysis, plasmid conjugation, products, r-factors, resistance plasmids, salmonella-enterica, sequence, Antimicrobial resistance, Bacterial ig-like proteins, Escherichia-coli, Plasmid conjugation


López-Ortiz, M, Zamora, RA, Giannotti, MI, Hu, C, Croce, R, Gorostiza, P, (2022). Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes Small 18, 2104366

Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant ?) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.© 2021 Wiley-VCH GmbH.

JTD Keywords: azurin, current distance decay spectroscopy, cytochrome c(6), electrochemical scanning tunneling microscopy (ecstm), electrochemistry, photosystem i, photosystem-i, plastocyanin, protein electron transfer, recognition, single metalloprotein, single molecules, structural basis, tunneling spectroscopy, 'current, Amino acids, Charge transfer, Chlorine compounds, Current distance decay spectroscopy, Decay spectroscopies, Distance decay, Electrochemical scanning tunneling microscopy, Electrochemical scanning tunneling microscopy (ecstm), Electrodes, Electron transfer, Electron transport properties, Gold compounds, Photosystem i, Photosystems, Protein electron transfer, Protein electron-transfer, Proteins, Scanning tunneling microscopy, Silver halides, Single molecule, Single molecules


Arista-Romero, M, Delcanale, P, Pujals, S, Albertazzi, L, (2022). Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles Acs Photonics 9, 101-109

Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFluS). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.

JTD Keywords: dna-paint, hemagglutinin, influenza, neuraminidase, paint, recombinant proteins, single-molecule localization microscopy, single-particle analysis, virus-like particles, Dna-paint, Hemagglutinin, Influenza, Neuraminidase, Paint, Recombinant proteins, Single particle analysis, Single-molecule localization microscopy, Single-particle analysis, Super-resolution microscopy, Superresolution microscopy, Virus-like particles


Guallar-Garrido, S, Almiñana-Rapún, F, Campo-Pérez, V, Torrents, E, Luquin, M, Julián, E, (2022). BCG Substrains Change Their Outermost Surface as a Function of Growth Media Vaccines 10, 40

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.

JTD Keywords: cell wall, efficacy, glycerol, hydrophobicity, lipid, neutral red, pdim, pgl, protein, strains, viability, virulence, Acylglycerol, Albumin, Article, Asparagine, Bacterial cell wall, Bacterial gene, Bacterium culture, Bcg vaccine, Catalase, Cell wall, Chloroform, Controlled study, Escherichia coli, Gene expression, Genomic dna, Glycerol, Glycerol monomycolate, Hexadecane, Housekeeping gene, Hydrophobicity, Immune response, Immunogenicity, Immunotherapy, Lipid, Lipid fingerprinting, Magnesium sulfate, Mercaptoethanol, Methanol, Methylglyoxal, Molybdatophosphoric acid, Mycobacterium bovis bcg, Neutral red, Nonhuman, Pdim, Petroleum ether, Pgl, Phenotype, Physical chemistry, Real time reverse transcription polymerase chain reaction, Rna 16s, Rna extraction, Rv0577, Staining, Thin layer chromatography, Unclassified drug


Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.

JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up


Riera, R, Hogervorst, TP, Doelman, W, Ni, Y, Pujals, S, Bolli, E, Codée, JDC, van Kasteren, SI, Albertazzi, L, (2021). Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT Nature Chemical Biology 17, 1281-1288

Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

JTD Keywords: dc-sign, density, dimerization, endocytosis, lateral mobility, ligand-binding, mannose receptor, proteins, recognition, Animal, Animals, Cell membrane, Cell membrane permeability, Chemistry, Cho cell line, Cho cells, Cricetulus, Cysteine-rich domain, Kinetics, Lectin, Lectins, Ligand, Ligands, Molecular library, Multivariate analysis, Polysaccharide, Polysaccharides, Procedures, Protein binding, Single molecule imaging, Small molecule libraries, Structure activity relation, Structure-activity relationship


Lozano, H, Millan-Solsona, R, Blanco-Cabra, N, Fabregas, R, Torrents, E, Gomila, G, (2021). Electrical properties of outer membrane extensions from Shewanella oneidensis MR-1 Nanoscale 13, 18754-18762

Outer membrane extensions from the metal-reducing bacterium Shewanella oneidensis MR-1 show an insulating behavior in dry air environment as measured by scanning dielectric microscopy.

JTD Keywords: constant, dielectric polarization, microbial nanowires, nanoscale, transport, Air environment, Bacteria, Bacterial cells, Bacterial nanowires, Dry air, Metal-reducing bacteria, Outer membrane, Phase-minerals, Proteins, Shewanella oneidensis mr-1, Solid phasis, Solid-phase, Space division multiple access, Tubulars


Le Roux, AL, Tozzi, C, Walani, N, Quiroga, X, Zalvidea, D, Trepat, X, Staykova, M, Arroyo, M, Roca-Cusachs, P, (2021). Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization Nature Communications 12, 6550

In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.

JTD Keywords: aggregation, amphiphysin, domains, vesicles, Article, Cell, Cell component, Curvature, Detection method, Geomembrane, Mechanotransduction, Membrane, Molecular analysis, Phase transition, Physiology, Protein, Self organization


Torabi, N, Qiu, XK, López-Ortiz, M, Loznik, M, Herrmann, A, Kermanpur, A, Ashrafi, A, Chiechi, RC, (2021). Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem i in Biophotovoltaic Devices Langmuir 37, 11465-11473

This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.

JTD Keywords: architecture, arrays, construction, metal, nanotubes, performance, photosynthetic proteins, polymer-fullerene, solar-cells, Photocurrent generation


Manzano-Muñoz, A, Alcon, C, Menéndez, P, Ramírez, M, Seyfried, F, Debatin, KM, Meyer, LH, Samitier, J, Montero, J, (2021). MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia Frontiers In Cell And Developmental Biology 9, 695225

Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 – a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.

JTD Keywords: apoptosis, bh3 mimetics, cancer, dependence, increases, kinase inhibition, pediatric leukemia, precision medicine, resistance, sensitivity, targeted therapies, tumor-cells, venetoclax, Apoptosis, Bcl-2 family proteins, Bh3 mimetics, Pediatric leukemia, Resistance, Targeted therapies


Konka, J, Espanol, M, Bosch, BM, de Oliveira, E, Ginebra, MP, (2021). Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study Materials Today Bio 12, 100137

Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pro-nounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity to-ward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.

JTD Keywords: calcium phosphates, ion exchange, nanostructure, protein adsorption, Biological-systems, Biomaterials, Biomimetic hydroxyapatites, Biomimetics, Bone-formation, Calcium deficient hydroxyapatite, Calcium phosphate, Calcium phosphates, Cell proliferation, Crystal structure, Crystallinity, Crystals structures, Culture medium, Growth, High reactivity, Hydroxyapatite, In-vitro, Ion exchange, Ionic exchange, Molecular biology, Nanocrystalline apatites, Nanostructure, Nanostructures, Octacalcium phosphate, Physicochemical studies, Physiological fluids, Physiology, Protein adsorption, Proteins, Proteomic studies, Raman spectroscopy, Serum-albumin, Specific surface area


Puiggalí-Jou, A, Molina, BG, Lopes-Rodrigues, M, Michaux, C, Perpète, EA, Zanuy, D, Aleman, C, (2021). Self-standing, conducting and capacitive biomimetic hybrid nanomembranes for selective molecular ion separation Physical Chemistry Chemical Physics 23, 16157-16164

Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 β-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kΩ cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.l-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.

JTD Keywords: channels, evolution, filter, Outer-membrane proteins


Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat


Boschker, HTS, Cook, PLM, Polerecky, L, Eachambadi, RT, Lozano, H, Hidalgo-Martinez, S, Khalenkow, D, Spampinato, V, Claes, N, Kundu, P, Wang, D, Bals, S, Sand, KK, Cavezza, F, Hauffman, T, Bjerg, JT, Skirtach, AG, Kochan, K, McKee, M, Wood, B, Bedolla, D, Gianoncelli, A, Geerlings, NMJ, Van Gerven, N, Remaut, H, Geelhoed, JS, Millan-Solsona, R, Fumagalli, L, Nielsen, LP, Franquet, A, Manca, JV, Gomila, G, Meysman, FJR, (2021). Efficient long-range conduction in cable bacteria through nickel protein wires Nature Communications 12, 3996

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. Filamentous cable bacteria conduct electrical currents over centimeter distances through fibers embedded in their cell envelope. Here, Boschker et al. show that the fibers consist of a conductive core containing nickel proteins that is surrounded by an insulating protein shell.

JTD Keywords: Bacteria (microorganisms), Bacterial protein, Bacterial proteins, Bacterium, Chemistry, Deltaproteobacteria, Electric conductivity, Electricity, Electron, Electron transport, Metabolism, Microscopy, Nanowires, Nickel, Physiology, Protein, Resonance raman, Spectroscopy, Transport electrons


Parra-Monreal, V, Ortega-Machuca, MA, Ramin-Azcin, J, Svendsen, W, Romano-Rodriguez, A, Moreno-Sereno, M, (2021). Detection of cytokines in skeletal muscle tissue using optical SPR sensing platform Proceedings Of The 2021 13th Spanish Conference On Electron Devices, Cde 2021 , 102-105

In this work we have explored the use of a Surface Plasmon resonance (SPR) phenomenon for the detection of interleukin-6 (IL-6), a pro-inflammatory cytokine. It plays an important role in the muscle tissues, having direct relation with muscle contraction and, thus, it is considered a biomarker for some types of muscular dystrophies. Here we show that SPR can be used as a real-time monitoring of the shift of the reflectance dip of a gold diffraction grating in front to the antibody adhesion to gold.

JTD Keywords: antibodies, gratings, interleukin-6 (il-6), proteins, Antibodies, Gratings, Interleukin-6 (il-6), Proteins, Surface plasmon resonance


Jurado, M, Castano, O, Zorzano, A, (2021). Stochastic modulation evidences a transitory EGF-Ras-ERK MAPK activity induced by PRMT5 Computers In Biology And Medicine 133, 104339

The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway involves a three-step cascade of kinases that transduce signals and promote processes such as cell growth, development, and apoptosis. An aberrant response of this pathway is related to the proliferation of cell diseases and tumors. By using simulation modeling, we document that the protein arginine methyltransferase 5 (PRMT5) modulates the MAPK pathway and thus avoids an aberrant behavior. PRMT5 methylates the Raf kinase, reducing its catalytic activity and thereby, reducing the activation of ERK in time and amplitude. Two minimal computational models of the epidermal growth factor (EGF)-Ras-ERK MAPK pathway influenced by PRMT5 were proposed: a first model in which PRMT5 is activated by EGF and a second one in which PRMT5 is stimulated by the cascade response. The reported results show that PRMT5 reduces the time duration and the expression of the activated ERK in both cases, but only in the first model PRMT5 limits the EGF range that generates an ERK activation. Based on our data, we propose the protein PRMT5 as a regulatory factor to develop strategies to fight against an excessive activity of the MAPK pathway, which could be of use in chronic diseases and cancer.

JTD Keywords: cancer, cell response modulation, computational model, egf-ras-erk signaling route, mapk pathway, methylation, Arginine methyltransferase 5, Cancer, Cell response modulation, Colorectal-cancer, Computational model, Egf-ras-erk signaling route, Epidermal-growth-factor, Factor receptor, Histone h3, Kinase cascade, Mapk pathway, Methylation, Negative-feedback, Pc12 cells, Prmt5, Protein, Signal-transduction


Vilela, D, Blanco-Cabra, N, Eguskiza, A, Hortelao, AC, Torrents, E, Sanchez, S, (2021). Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria Acs Applied Materials & Interfaces 13, 14964-14973

The low efficacy of current conventional treatments for bacterial infections increases mortality rates worldwide. To alleviate this global health problem, we propose drug-free enzyme-based nanomotors for the treatment of bacterial urinary-tract infections. We develop nanomotors consisting of mesoporous silica nanoparticles (MSNPs) that were functionalized with either urease (U-MSNPs), lysozyme (L-MSNPs), or urease and lysozyme (M-MSNPs), and use them against nonpathogenic planktonic Escherichia coli. U-MSNPs exhibited the highest bactericidal activity due to biocatalysis of urea into NaHCO3 and NH3, which also propels U-MSNPs. In addition, U-MSNPs in concentrations above 200 μg/mL were capable of successfully reducing 60% of the biofilm biomass of a uropathogenic E. coli strain. This study thus provides a proof-of-concept, demonstrating that enzyme-based nanomotors are capable of fighting infectious diseases. This approach could potentially be extended to other kinds of diseases by selecting appropriate biomolecules.

JTD Keywords: biofilms, carbonate, e. coli, enzymatic nanomotors, infections, lysozyme, micromotors, nanomachines, proteins, self-propulsion, Biofilms, E. coli, Eliminate escherichia-coli, Enzymatic nanomotors, Infections, Nanomachines, Self-propulsion


Badia, M, Bolognesi, B, (2021). Assembling the right type of switch: Protein condensation to signal cell death Current Opinion In Cell Biology 69, 55-61

© 2020 Elsevier Ltd Protein phase transitions are particularly amenable for cell signalling as these highly cooperative processes allow cells to make binary decisions in response to relatively small intracellular changes. The different processes of condensate formation and the distinct material properties of the resulting condensates provide a dictionary to modulate a range of decisions on cell fate. We argue that, on the one hand, the reversibility of liquid demixing offers a chance to arrest cell growth under specific circumstances. On the other hand, the transition to amyloids is better suited for terminal decisions such as those leading to apoptosis and necrosis. Here, we review recent examples of both scenarios, highlighting how mutations in signalling proteins affect the formation of biomolecular condensates with drastic effects on cell survival.

JTD Keywords: amyloid, cell death, deep mutagenesis, llps, rna-binding proteins, Amyloid, Cell death, Deep mutagenesis, Llps, Rna-binding proteins


Andrian, T, Bakkum, T, van Elsland, DM, Bos, E, Koster, AJ, Albertazzi, L, van Kasteren, SI, Pujals, S, (2021). Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking Methods In Cell Biology 162, 303-331

© 2020 Elsevier Inc. Correlative light and electron microscopy (CLEM) entails a group of multimodal imaging techniques that are combined to pinpoint to the location of fluorescently labeled molecules in the context of their ultrastructural cellular environment. Here we describe a detailed workflow for STORM-CLEM, in which STochastic Optical Reconstruction Microscopy (STORM), an optical super-resolution technique, is correlated with transmission electron microscopy (TEM). This protocol has the advantage that both imaging modalities have resolution at the nanoscale, bringing higher synergies on the information obtained. The sample is prepared according to the Tokuyasu method followed by click-chemistry labeling and STORM imaging. Then, after heavy metal staining, electron microscopy imaging is performed followed by correlation of the two images. The case study presented here is on intracellular pathogens, but the protocol is versatile and could potentially be applied to many types of samples.

JTD Keywords: cells, click-chemistry, complex, correlative light and electron microscopy, cycloaddition, ligation, localization, proteins, resolution limit, single molecule localization microscopy, stochastic optical reconstruction microscopy (storm), storm, super-resolution microscopy, tokuyasu cryo-sectioning, tool, Click-chemistry, Correlative light and electron microscopy, Fluorescent-probes, Single molecule localization microscopy, Stochastic optical reconstruction microscopy (storm), Super-resolution microscopy, Tokuyasu cryo-sectioning, Transmission electron microscopy


Blanco-Fernandez, B, Gaspar, VM, Engel, E, Mano, JF, (2021). Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models Advanced Science 8, 2003129

© 2020 The Authors. Advanced Science published by Wiley-VCH GmbH The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.

JTD Keywords: 3d in vitro models, cancers, hydrogels, peptides, 3d in vitro models, Cancers, Hydrogels, Peptides, Proteins


Martí, D, Torras, J, Bertran, O, Turon, P, Alemán, C, (2021). Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein Computational And Structural Biotechnology Journal 19, 1848-1862

Rapid spread of SARS-CoV-2 virus have boosted the need of knowledge about inactivation mechanisms to minimize the impact of COVID-19 pandemic. Recent studies have shown that SARS-CoV-2 virus can be disabled by heating, the exposure time for total inactivation depending on the reached temperature (e.g. more than 45 min at 329 K or less than 5 min at 373 K. In spite of recent crystallographic structures, little is known about the molecular changes induced by the temperature. Here, we unravel the molecular basis of the effect of the temperature over the SARS-CoV-2 spike glycoprotein, which is a homotrimer with three identical monomers, by executing atomistic molecular dynamics (MD) simulations at 298, 310, 324, 338, 358 and 373 K. Furthermore, both the closed down and open up conformational states, which affect the accessibility of receptor binding domain, have been considered. Our results suggest that the spike homotrimer undergoes drastic changes in the topology of the hydrogen bonding interactions and important changes on the secondary structure of the receptor binding domain (RBD), while electrostatic interactions (i.e. salt bridges) are mainly preserved. The proposed inactivation mechanism has important implications for engineering new approaches to fight the SARS-CoV-2 coronavirus, as for example, cleaving or reorganizing the hydrogen bonds through chaotropic agents or nanoparticles with local surface resonant plasmon effect.

JTD Keywords: atomistic simulations, coronaviruses, denaturation, homotrimeric protein, inactivation, proteins, receptor binding domain, salt bridges, simulation, thermal inactivation, virus spike, Atomistic simulations, Homotrimeric protein, Receptor binding domain, Secondary-structure, Thermal inactivation, Virus spike


Molina, B. G., Lopes-Rodrigues, M., Estrany, F., Michaux, C., Perpète, E. A., Armelin, E., Alemán, C., (2020). Free-standing flexible and biomimetic hybrid membranes for ions and ATP transport Journal of Membrane Science 601, 117931

The transport of metabolites across robust, flexible and free-standing biomimetic membranes made of three perforated poly (lactic acid) (pPLA) layers, separated by two anodically polymerized conducting layers of poly (3,4-ethylenedioxythiophene-co-3-dodecylthiophene), and functionalized on the external pPLA layers with a voltage dependent anion channel (VDAC) protein, has been demonstrated. The three pPLA layers offer robustness and flexibility to the bioactive platform and the possibility of obtaining conducing polymer layers by in situ anodic polymerization. The incorporation of dodecylthiophene units, which bear a 12 carbon atoms long linear alkyl chain, to the conducting layers allows mimicking the amphiphilic environment offered by lipids in cells, increasing 32% the efficiency of the functionalization. Electrochemical impedance measurements in NaCl and adenosine triphosphate (ATP) solutions prove that the integration of the VDAC porin inside the PLA perforations considerably increases the membrane conductivity and is crucial for the electrolyte diffusion. Such results open the door for the development of advanced sensing devices for a broad panel of biomedical applications.

JTD Keywords: Conducting polymers, Membrane proteins, Membranes, Polylactic acid, Self-supported films


Monteil, Vanessa, Kwon, Hyesoo, Prado, Patricia, Hagelkrüys, Astrid, Wimmer, Reiner A., Stahl, Martin, Leopoldi, Alexandra, Garreta, Elena, Hurtado Del Pozo, Carmen, Prosper, Felipe, Romero, Juan Pablo, Wirnsberger, Gerald, Zhang, Haibo, Slutsky, Arthur S., Conder, Ryan, Montserrat, Nuria, Mirazimi, Ali, Penninger, Josef M., (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 Cell 181, (4), 905-913.e7

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.

JTD Keywords: COVID-19, Angiotensin converting enzyme 2, Blood vessels, Human organoids, Kidney, Severe acute respiratory syndrome coronavirus, Spike glycoproteins, Treatment


M Leite, D., Matias, D., Battaglia, G., (2020). The role of BAR proteins and the glycocalyx in brain endothelium transcytosis Cells 9, (12), 2685

Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.

JTD Keywords: BAR proteins, Blood-brain barrier, Endothelium, Glycocalyx, Transcytosis, Tubulation


Tozzi, C., Walani, N., Arroyo, M., (2019). Out-of-equilibrium mechanochemistry and self-organization of fluid membranes interacting with curved proteins New Journal of Physics 21, (9), 093004

The function of biological membranes is controlled by the interaction of the fluid lipid bilayer with various proteins, some of which induce or react to curvature. These proteins can preferentially bind or diffuse towards curved regions of the membrane, induce or stabilize membrane curvature and sequester membrane area into protein-rich curved domains. The resulting tight interplay between mechanics and chemistry is thought to control organelle morphogenesis and dynamics, including traffic, membrane mechanotransduction, or membrane area regulation and tension buffering. Despite all these processes are fundamentally dynamical, previous work has largely focused on equilibrium and a self-consistent theoretical treatment of the dynamics of curvature sensing and generation has been lacking. Here, we develop a general theoretical and computational framework based on a nonlinear Onsager's formalism of irreversible thermodynamics for the dynamics of curved proteins and membranes. We develop variants of the model, one of which accounts for membrane curving by asymmetric crowding of bulky off-membrane protein domains. As illustrated by a selection of test cases, the resulting governing equations and numerical simulations provide a foundation to understand the dynamics of curvature sensing, curvature generation, and more generally membrane curvature mechano-chemistry.

JTD Keywords: Curvature generation, Curvature sensing, Lipid bilayers, Membrane proteins


Crespo-Villanueva, Adrián, Gumí-Audenis, Berta, Sanz, Fausto, Artzner, Franck, Mériadec, Cristelle, Rousseau, Florence, Lopez, Christelle, Giannotti, M. I., Guyomarc'h, Fanny, (2018). Casein interaction with lipid membranes: Are the phase state or charge density of the phospholipids affecting protein adsorption? Biochimica et Biophysica Acta (BBA) - Biomembranes 1860, (12), 2588-2598

Casein micelles are ~200 nm electronegative particles that constitute 80 wt% of the milk proteins. During synthesis in the lactating mammary cells, caseins are thought to interact in the form of ~20 nm assemblies, directly with the biological membranes of the endoplasmic reticulum and/or the Golgi apparatus. However, conditions that drive this interaction are not yet known. Atomic force microscopy imaging and force spectroscopy were used to directly observe the adsorption of casein particles on supported phospholipid bilayers with controlled compositions to vary their phase state and surface charge density, as verified by X-ray diffraction and zetametry. At pH 6.7, the casein particles adsorbed onto bilayer phases with zwitterionic and liquid-disordered phospholipid molecules, but not on phases with anionic or ordered phospholipids. Furthermore, the presence of adsorbed caseins altered the stability of the yet exposed bilayer. Considering their respective compositions and symmetry/asymmetry, these results cast light on the possible interactions of casein assemblies with the organelles’ membranes of the lactating mammary cells.

JTD Keywords: Casein proteins, Phospholipid membrane, Supported lipid bilayer, Atomic force microscopy


López-Martínez, Montserrat, Artés, Juan Manuel, Sarasso, Veronica, Carminati, Marco, Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2017). Differential electrochemical conductance imaging at the nanoscale Small 13, (36), 1700958

Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic-scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current–potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology.

JTD Keywords: Differential electrochemical conductance, ECSTM, Electron transport pathway, Iron passivation, Redox metalloproteins


Solano-Collado, Virtu, Hüttener, Márrio, Espinosa, Manuel, Juárez, Antonio, Bravo, Alicia, (2016). MgaSpn and H-NS: Two unrelated global regulators with similar DNA-binding properties Frontiers in Molecular Biosciences 3, Article 60

Global regulators play an essential role in the adaptation of bacterial cells to specific niches. Bacterial pathogens thriving in the tissues and organs of their eukaryotic hosts are a well-studied example. Some of the proteins that recognize local DNA structures rather than specific nucleotide sequences act as global modulators in many bacteria, both Gram-negative and -positive. To this class of regulators belong the H-NS-like proteins, mainly identified in γ-Proteobacteria, and the MgaSpn-like proteins identified in Firmicutes. H-NS and MgaSpn from Escherichia coli and Streptococcus pneumoniae, respectively, neither have sequence similarity nor share structural domains. Nevertheless, they display common features in their interaction with DNA, namely: (i) they bind to DNA in a non-sequence-specific manner, (ii) they have a preference for intrinsically curved DNA regions, and (iii) they are able to form multimeric complexes on linear DNA. Using DNA fragments from the hemolysin operon regulatory region of the E. coli plasmid pHly152, we show in this work that MgaSpn is able to recognize particular regions on extended H-NS binding sites. Such regions are either located at or flanked by regions of potential bendability. Moreover, we show that the regulatory region of the pneumococcal P1623B promoter, which is recognized by MgaSpn, contains DNA motifs that are recognized by H-NS. These motifs are adjacent to regions of potential bendability. Our results suggest that both regulatory proteins recognize similar structural characteristics of DNA.

JTD Keywords: Global transcriptional regulators, Nucleoid-associated proteins, Mga/AtxA family, Protein-DNA interactions, DNA bendability


Sanmartí-Espinal, M., Galve, R., Iavicoli, P., Persuy, M. A., Pajot-Augy, E., Marco, M. P., Samitier, J., (2016). Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles Colloids and Surfaces B: Biointerfaces 139, 269-276

Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes.

JTD Keywords: Bioelectronic nose, Competitive ELISA, G-protein-coupled receptors quantification, Natural vesicles, Olfactory receptors, Transmembrane proteins


Moles, Ernest, Valle-Delgado, Juan José, Urbán, Patricia, Azcárate, Isabel G., Bautista, José M., Selva, Javier, Egea, Gustavo, Ventura, Salvador, Fernàndez-Busquets, Xavier, (2015). Possible roles of amyloids in malaria pathophysiology Future Science OA , 1, (2), FSO43

The main therapeutic and prophylactic tools against malaria have been locked for more than a century in the classical approaches of using drugs targeting metabolic processes of the causing agent, the protist Plasmodium spp., and of designing vaccines against chosen antigens found on the parasite’s surface. Given the extraordinary resources exhibited by Plasmodium to escape these traditional strategies, which have not been able to free humankind from the scourge of malaria despite much effort invested in them, new concepts have to be explored in order to advance toward eradication of the disease. In this context, amyloid-forming proteins and peptides found in the proteome of the pathogen should perhaps cease being regarded as mere anomalous molecules. Their likely functionality in the pathophysiology of Plasmodium calls for attention being paid to them as a possible Achilles’ heel of malaria. Here we will give an overview of Plasmodium-encoded amyloid-forming polypeptides as potential therapeutic targets and toxic elements, particularly in relation to cerebral malaria and the blood–brain barrier function. We will also discuss the recent finding that the genome of the parasite contains an astonishingly high proportion of prionogenic domains.

JTD Keywords: Amyloids, Intrinsically unstructured proteins, Malaria, Prions


Cuervo, A., Dans, P. D., Carrascosa, J. L., Orozco, M., Gomila, G., Fumagalli, L., (2014). Direct measurement of the dielectric polarization properties of DNA Proceedings of the National Academy of Sciences of the United States of America 111, (35), E3624-E3630

The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ~ 2–4), we found that the DNA dielectric constant is ~ 8, considerably higher than the value of ~ 3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson–Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques.

JTD Keywords: Atomic force microscopy, Atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, capsid protein, DNA, double stranded DNA, amino acid composition, article, atomic force microscopy, bacteriophage, bacteriophage T7, dielectric constant, dipole, DNA binding, DNA packaging, DNA structure, electron microscopy, ligand binding, nonhuman, polarization, priority journal, protein analysis, protein DNA interaction, scanning probe microscopy, static electricity, virion, virus capsid, virus particle, atomic force microscopy, atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, Bacteriophage T7, Capsid, Cations, Dielectric Spectroscopy, DNA, DNA, Viral, DNA-Binding Proteins, Electrochemical Techniques, Ligands, Microscopy, Atomic Force, Models, Chemical, Nuclear Proteins


Paytubia, S., Dietrich, M., Queiroz, M.H., Juárez, A., (2013). Role of plasmid- and chromosomally encoded Hha proteins in modulation of gene expression in E. coli O157:H7 Plasmid International Society for Plasmid Biology Meeting , Elsevier (Santander, Spain) 70 (1), 52-60

H-NS and Hha belong to the nucleoid-associated family of proteins and modulate gene expression in response to environmental stimuli. Genes coding for these proteins can be either chromosomally or plasmid-encoded. In this work, we analyse the regulatory role of the Hha protein encoded in the virulence plasmid of the enterohemorrhagic Escherichia coli O157:H7 (HhapO157). This plasmid is present in all clinical isolates of E. coli O157:H7 and contributes to virulence. Both, HhapO157 and E. coli O157:H7-chromosomal Hha (Hhachr) exhibit a significant degree of similarity. The hha gene from plasmid pO157 is transcribed from its own putative promoter and is overexpressed in a chromosomal hha mutant. As its chromosomal counterpart, HhapO157 is able to interact with H-NS. Remarkably, HhapO157 targets only a subset of the genes modulated by Hhachr. This has been evidenced by both assaying the ability of HhapO157 to complement expression of a specific operon (i.e., the haemolysin operon) and by comparing the global transcriptome of the wt strain and its hhap, hhac and hhapc mutant derivatives. HhapO157 and Hhachr share some common regulatory features, however they also display specific targeting of some genes and even a different modulatory role in some others.

JTD Keywords: E. coli O157:H7, Hha, H-NS, Plasmid, pO157, Nucleoid-associated proteins


Esteban, O., Christ, D., Stock, D., (2013). Purification of molecular machines and nanomotors using phage-derived monoclonal antibody fragments Protein Nanotechnology - Methods in Molecular Biology (ed. Gerrard, J. A.), Humana Press (New York, USA) 996, 203-217

Molecular machines and nanomotors are sophisticated biological assemblies that convert potential energy stored either in transmembrane ion gradients or in ATP into kinetic energy. Studying these highly dynamic biological devices by X-ray crystallography is challenging, as they are difficult to produce, purify, and crystallize. Phage display technology allows us to put a handle on these molecules in the form of highly specific antibody fragments that can also stabilize conformations and allow versatile labelling for electron microscopy, immunohistochemistry, and biophysics experiments. Here, we describe a widely applicable protocol for selecting high-affinity monoclonal antibody fragments against a complex molecular machine, the A-type ATPase from T. thermophilus that allows fast and simple purification of this transmembrane rotary motor from its wild-type source. The approach can be readily extended to other integral membrane proteins and protein complexes as well as to soluble molecular machines and nanomotors.

JTD Keywords: ATP synthase, Crystallization, Domain antibodies, Electron microscopy, Labelling, Membrane proteins, Monoclonal antibody fragments, Phage display, Protein purification, X-ray crystallography


Pegueroles, M., Tonda-Turo, C., Planell, J. A., Gil, F. J., Aparicio, C., (2012). Adsorption of fibronectin, fibrinogen, and albumin on TiO2: Time-resolved kinetics, structural changes, and competition study Biointerphases , 7, (48), 13

An understanding of protein adsorption process is crucial for designing biomaterial surfaces. In this work, with the use of a quartz-crystal microbalance with dissipation monitoring, we researched the following: (a) the kinetics of adsorption on TiO2 surfaces of three extensively described proteins that are relevant for metallic implant integration [i.e., albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)]; and (b) the competition of those proteins for adsorbing on TiO2 in a two-step experiment consisted of sequentially exposing the surfaces to different monoprotein solutions. Each protein showed a different process of adsorption and properties of the adlayer-calculated using the Voigt model. The competition experiments showed that BSA displaced larger proteins such as Fn and Fbg when BSA was introduced as the second protein in the system, whereas the larger proteins laid on top of BSA forming an adsorbed protein bi-layer when those were introduced secondly in the system.

JTD Keywords: QCM, Human plasma fibronectin, Induced conformational-changes, Von-willebrand-factor, BSA, Protein adsortion, Polymer surfaces, Solid-surfaces, Viscoelastic properties, Globular-proteins


Valle-Delgado, J. J., Molina-Bolívar, J. A., Galisteo-González, F., Gálvez-Ruiz, M. J., (2011). Evidence of hydration forces between proteins Current Opinion in Colloid and Interface Science , 16, (6), 572-578

Proteins are fundamental molecules in biology that are also involved in a wide range of industrial and biotechnological processes. Consequently, many works in the literature have been devoted to the study of protein-protein and protein-surface interactions in aqueous solutions. The results have been usually interpreted within the frame of the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for colloidal systems. However, against the DLVO predictions, striking evidence of repulsive forces between proteins at high salt concentrations has been observed in different works based on the analysis of the second virial coefficient or on the direct measurement of protein interaction with an atomic force microscope. Hydration forces due to the adsorption of hydrated cations onto the negatively charged protein surfaces have been invoked to rationalize this anomalous repulsion. The hydration forces between proteins provide protein-covered particles with a non-DLVO colloidal stability at high salt concentrations, as different studies in the literature has proven. This review summarizes the most relevant results published so far on the presence of hydration forces between proteins and protein-coated colloidal particles.

JTD Keywords: Colloidal particles, Colloidal stability, Hydrated ions, Hydration forces, Proteins


Paytubi, S., Garcia, J., Juarez, A., (2011). Bacterial Hha-like proteins facilitate incorporation of horizontally transferred DNA Central European Journal of Biology , 6, (6), 879-886

Horizontal gene transfer (HGT), non-hereditary transfer of genetic material between organisms, accounts for a significant proportion of the genetic variability in bacteria. In Gram negative bacteria, the nucleoid-associated protein H-NS silences unwanted expression of recently acquired foreign DNA. This, in turn, facilitates integration of the incoming genes into the regulatory networks of the recipient cell. Bacteria belonging to the family Enterobacteriaceae express an additional protein, the Hha protein that, by binding to H-NS, potentiates silencing of HGT DNA. We provide here an overview of Hha-like proteins, including their structure and function, as well as their evolutionary relationship. We finally present available information suggesting that, by expressing Hha-like proteins, bacteria such as Escherichia coli facilitate HGT incorporation and hence, the impact of HGT in their genetic diversity.

JTD Keywords: Hha, H-NS, HGT DNA, Enterobacteria, Nucleoid-associated proteins, Enterica serovar typhimurium, Histone-like protein, h-ns, Escherichia-coli, Yersinia-enterocolitica, Salmonella-enterica


Sabaté, R., Espargaró, A., de Groot, N. S., Valle-Delgado, J. J., Fernàndez-Busquets, X., Ventura, S., (2010). The role of protein sequence and amino acid composition in amyloid formation: Scrambling and backward reading of IAPP amyloid fibrils Journal of Molecular Biology , 404, (2), 337-352

The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.

JTD Keywords: Amyloid formation, Islet amyloid polypeptide, Protein aggregation, Protein sequence, Retro proteins


Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices , 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

JTD Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium


Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., (2009). Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes Nano Letters 9, (4), 1604-1608

We present the experimental demonstration of low-frequency dielectric constant imaging of single-layer supported biomembranes at the nanoscale. The dielectric constant image has been quantitatively reconstructed by combining the thickness and local capacitance obtained using a scanning force microscope equipped with a sub-attofarad low-frequency capacitance detector. This work opens new possibilities for studying bioelectric phenomena and the dielectric properties of biological membranes at the nanoscale.

JTD Keywords: Atomic-force microscopy, Nnear-field microscopy, Purple membrane, Scanning capacitance, Biological-systems, Fluid, Spectroscopy, Resolution, Proteins, Dynamics


Nussio, M. R., Oncins, G., Ridelis, I., Szili, E., Shapter, J. G., Sanz, F., Voelcker, N. H., (2009). Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: A force spectroscopy study Journal of Physical Chemistry B , 113, (30), 10339-10347

In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-Dimyzistoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

JTD Keywords: Black lipid-membranes, Gold surfaces, Supported bilayers, Channel activity, Micro-BLMS, Silicon, Proteins, Vesicles, AFM, Temperature measurement


Caballero, D., Samitier, J., Errachid, A., (2009). Submerged nanocontact printing (SnCP) of thiols Journal of Nanoscience and Nanotechnology , 9, (11), 6478-6482

Biological patterned surfaces having sub-micron scale resolution are of great importance in many fields of life science and biomedicine. Different techniques have been proposed for surface patterning at the nanoscale. However, most of them present some limitations regarding the patterned area size or are time-consuming. Micro/nanocontact printing is the most representative soft lithography-based technique for surface patterning at the nanoscale. Unfortunately, conventional micro/nanocontact printing also suffers from problems such as diffusion and stamp collapsing that limit pattern resolution. To overcome these problems, a simple way of patterning thiols under liquid media using submerged nanocontact printing (SnCP) over large areas (similar to cm(2)) achieving nanosize resolution is presented. The technique is also low cost and any special equipment neither laboratory conditions are required. Nanostructured poly(dimethyl siloxane) stamps are replicated from commercially available digital video disks. SnCP is used to stamp patterns of 200 nm 1-octadecanethiol lines in liquid media, avoiding ink diffusion and stamp collapsing, over large areas on gold substrates compared with conventional procedures. Atomic force microscopy measurements reveal that the patterns have been successfully transferred with high fidelity. This is an easy, direct, effective and low cost methodology for molecule patterning immobilization which is of interest in those areas that require nanoscale structures over large areas, such as tissue engineering or biosensor applications.

JTD Keywords: Submerged Nanocontact Printing, Replica Molding, Nanopatterning, Large Area, Dip-pen nanolithography, High-aspect-ratio, Soft lithography, Submicronscale, Nanoimprint lithography, Thin-film, Surfaces, Fabrication, Proteins, Nanofabrication


Banos, R. C., Pons, J. I., Madrid, C., Juarez, A., (2008). A global modulatory role for the Yersinia enterocolitica H-NS protein Microbiology , 154, (5), 1281-1289

The H-NS protein plays a significant role in the modulation of gene expression in Gram-negative bacteria. Whereas isolation and characterization of hns mutants in Escherichia coli, Salmonella and Shigella represented critical steps to gain insight into the modulatory role of H-NS, it has hitherto not been possible to isolate hns mutants in Yersinia. The hns mutation is considered to be deleterious in this genus. To study the modulatory role of H-NS in Yersinia we circumvented hns lethality by expressing in Y. enterocolitica a truncated H-NS protein known to exhibit anti-H-NS activity in E. coli (H-NST(EPEC)). Y. enterocolitica cells expressing H-NST(EPEC) showed an altered growth rate and several differences in the protein expression pattern, including the ProV protein, which is modulated by H-NS in other enteric bacteria. To further confirm that H-NST(EPEC) expression in Yersinia can be used to demonstrate H-NS-dependent regulation in this genus, we used this approach to show that H-NS modulates expression of the YmoA protein.

JTD Keywords: Bacterial Proteins/biosynthesis/genetics/ physiology, DNA-Binding Proteins/biosynthesis/genetics/ physiology, Electrophoresis, Gel, Two-Dimensional, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genes, Essential, Proteome/analysis, RNA, Bacterial/biosynthesis, RNA, Messenger/biosynthesis, Reverse Transcriptase Polymerase Chain Reaction, Sequence Deletion, Yersinia enterocolitica/chemistry/genetics/growth & development/ physiology


Castellarnau, Marc, Errachid, Abdelhamid, Madrid, Cristina, Juárez, Antonio, Samitier, Josep, (2006). Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli Biophysical Journal , 91, (10), 3937-3945

In this study we report on an experimental method based on dielectrophoretic analysis to identify changes in four Escherichia coli isogenic strains that differed exclusively in one mutant allele. The dielectrophoretic properties of wild-type cells were compared to those of hns, hha, and hha hns mutant derivatives. The hns and hha genes code respectively for the global regulators Hha and H-NS. The Hha and H-NS proteins modulate gene expression in Escherichia coli and other Gram negative bacteria. Mutations in either hha or hns genes result in a pleiotropic phenotype. A two-shell prolate ellipsoidal model has been used to fit the experimental data, obtained from dielectrophoresis measurements, and to study the differences in the dielectric properties of the bacterial strains. The experimental results show that the mutant genotype can be predicted from the dielectrophoretic analysis of the corresponding cultures, opening the way to the development of microdevices for specific identification. Therefore, this study shows that dielectrophoresis can be a valuable tool to study bacterial populations which, although apparently homogeneous, may present phenotypic variability.

JTD Keywords: H-NS, Dielectric behaviour, Hemolysin genes, Cells, Separation, Expression, Proteins, HHA, Electrorotation, Polarization