DONATE

Publications

by Keyword: Frequency

Gonzalez, Hernando, Arizmendi, Carlos Julio, Giraldo, Beatriz F, (2024). Development of a Deep Learning Model for the Prediction of Ventilator Weaning International Journal Of Online And Biomedical Engineering 20, 161-178

The issue of failed weaning is a critical concern in the intensive care unit (ICU) setting. This scenario occurs when a patient experiences difficulty maintaining spontaneous breathing and ensuring a patent airway within the first 48 hours after the withdrawal of mechanical ventilation. Approximately 20% of ICU patients experience this phenomenon, which has severe repercussions on their health. It also has a substantial impact on clinical evolution and mortality, which can increase by 25% to 50%. To address this issue, we propose a medical support system that uses a convolutional neural network (CNN) to assess a patient's suitability for disconnection from a mechanical ventilator after a spontaneous breathing test (SBT). During SBT, respiratory flow and electrocardiographic activity were recorded and after processed using time-frequency analysis (TFA) techniques. Two CNN architectures were evaluated in this study: one based on ResNet50, with parameters tuned using a Bayesian optimization algorithm, and another CNN designed from scratch, with its structure also adapted using a Bayesian optimization algorithm. The WEANDB database was used to train and evaluate both models. The results showed remarkable performance, with an average accuracy 98 +/- 1.8% when using CNN from scratch. This model has significant implications for the ICU because it provides a reliable tool to enhance patient care by assisting clinicians in making timely and accurate decisions regarding weaning. This can potentially reduce the adverse outcomes associated with failed weaning events.

JTD Keywords: Bayesian optimization algorithm (boa, Continuous wavelet transform (cwt), Convolutional, Extubation, Failur, Intensive-care-unit, Neural network (cnn) from scratch, Respiratory-distress-syndrome, Time-frequency analysis (tfa), Weaning


Gregori-Pla, C, Zirak, P, Cotta, G, Bramon, P, Blanco, I, Serra, I, Mola, A, Fortuna, A, Solà-Soler, J, Giraldo, BFG, Durduran, T, Mayos, M, (2023). How does obstructive sleep apnea alter cerebral hemodynamics? Sleep 46, zsad122

We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography.Severe OSA patients were studied during night sleep while monitored by polysomnography. Transcranial, bed-side diffuse correlation spectroscopy (DCS) and frequency-domain near-infrared diffuse correlation spectroscopy (NIRS-DOS) were used to follow microvascular cerebral hemodynamics in the frontal lobes of the cerebral cortex. Changes in cerebral blood flow (CBF), total hemoglobin concentration (THC), and cerebral blood oxygen saturation (StO2) were analyzed.We considered 3283 obstructive apnea/hypopnea events from sixteen OSA patients (Age (median, interquartile range) 57 (52-64.5); females 25%; AHI (apnea-hypopnea index) 84.4 (76.1-93.7)). A biphasic response (maximum/minimum followed by a minimum/maximum) was observed for each cerebral hemodynamic variable (CBF, THC, StO2), heart rate and peripheral arterial oxygen saturation (SpO2). Changes of the StO2 followed the dynamics of the SpO2, and were out of phase from the THC and CBF. Longer events were associated with larger CBF changes, faster responses and slower recoveries. Moreover, the extrema of the response to obstructive hypopneas were lower compared to apneas (p < .001).Obstructive apneas/hypopneas cause profound, periodic changes in cerebral hemodynamics, including periods of hyper- and hypo-perfusion and intermittent cerebral hypoxia. The duration of the events is a strong determinant of the cerebral hemodynamic response, which is more pronounced in apnea than hypopnea events.© The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society.

JTD Keywords: cerebral hemodynamics, desaturation, diffuse correlation spectroscopy, duration, hypopnea, hypoxemia, near-infrared spectroscopy, optical pathlength, oxygenation, severity, sleep disorder, spectroscopy, tissue, Adult, Airway obstruction, Apnea hypopnea index, Arterial oxygen saturation, Article, Blood oxygen tension, Blood-flow, Brain blood flow, Brain cortex, Cerebral hemodynamics, Controlled study, Diffuse correlation spectroscopy, Disease severity, Female, Frequency, Frontal lobe, Heart rate, Hemodynamics, Hemoglobin, Hemoglobin determination, Human, Humans, Major clinical study, Male, Near infrared spectroscopy, Near-infrared spectroscopy, Obstructive sleep apnea, Oxygen, Periodicity, Polysomnography, Sleep apnea syndromes, Sleep apnea, obstructive, Sleep disorder, Spectroscopy, near-infrared


Ahmad, J, Ellis, C, Leech, R, Voytek, B, Garces, P, Jones, E, Buitelaar, J, Loth, E, dos Santos, FP, Amil, AF, Verschure, PFMJ, Murphy, D, McAlonan, G, (2022). From mechanisms to markers: novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans Translational Psychiatry 12, 467

Brain function is a product of the balance between excitatory and inhibitory (E/I) brain activity. Variation in the regulation of this activity is thought to give rise to normal variation in human traits, and disruptions are thought to potentially underlie a spectrum of neuropsychiatric conditions (e.g., Autism, Schizophrenia, Downs' Syndrome, intellectual disability). Hypotheses related to E/I dysfunction have the potential to provide cross-diagnostic explanations and to combine genetic and neurological evidence that exists within and between psychiatric conditions. However, the hypothesis has been difficult to test because: (1) it lacks specificity-an E/I dysfunction could pertain to any level in the neural system- neurotransmitters, single neurons/receptors, local networks of neurons, or global brain balance - most researchers do not define the level at which they are examining E/I function; (2) We lack validated methods for assessing E/I function at any of these neural levels in humans. As a result, it has not been possible to reliably or robustly test the E/I hypothesis of psychiatric disorders in a large cohort or longitudinal patient studies. Currently available, in vivo markers of E/I in humans either carry significant risks (e.g., deep brain electrode recordings or using Positron Emission Tomography (PET) with radioactive tracers) and/or are highly restrictive (e.g., limited spatial extent for Transcranial Magnetic Stimulation (TMS) and Magnetic Resonance Spectroscopy (MRS). More recently, a range of novel Electroencephalography (EEG) features has been described, which could serve as proxy markers for E/I at a given level of inference. Thus, in this perspective review, we survey the theories and experimental evidence underlying 6 novel EEG markers and their biological underpinnings at a specific neural level. These cheap-to-record and scalable proxy markers may offer clinical utility for identifying subgroups within and between diagnostic categories, thus directing more tailored sub-grouping and, therefore, treatment strategies. However, we argue that studies in clinical populations are premature. To maximize the potential of prospective EEG markers, we first need to understand the link between underlying E/I mechanisms and measurement techniques.

JTD Keywords: Cortical networks, Direction selectivity, Excitation/inhibition balance, Fast network oscillations, Gaba concentration, Gamma oscillation frequency, Neuronal oscillations, Range temporal correlations, Self-organized criticality, Theta-oscillations


Arboleda, A, Amado, L, Rodriguez, J, Naranjo, F, Giraldo, BF, (2021). A new protocol to compare successful versus failed patients using the electromyographic diaphragm signal in extubation process Conference Proceedings : ... Annual International Conference Of The Ieee Engineering In Medicine And Biology Society. Ieee Engineering In Medicine And Biology Society. Conference , 5646-5649

In clinical practice, when a patient is undergoing mechanical ventilation, it is important to identify the optimal moment for extubation, minimizing the risk of failure. However, this prediction remains a challenge in the clinical process. In this work, we propose a new protocol to study the extubation process, including the electromyographic diaphragm signal (diaEMG) recorded through 5-channels with surface electrodes around the diaphragm muscle. First channel corresponds to the electrode on the right. A total of 40 patients in process of withdrawal of mechanical ventilation, undergoing spontaneous breathing tests (SBT), were studied. According to the outcome of the SBT, the patients were classified into two groups: successful (SG: 19 patients) and failure (FG: 21 patients) groups. Parameters extracted from the envelope of each channel of diaEMG in time and frequency domain were studied. After analyzing all channels, the second presented maximum differences when comparing the two groups of patients, with parameters related to root mean square (p = 0.005), moving average (p = 0.001), and upward slope (p = 0.017). The third channel also presented maximum differences in parameters as the time between maximum peak (p = 0.004), and the skewness (p = 0.027). These results suggest that diaphragm EMG signal could contribute to increase the knowledge of the behaviour of respiratory system in these patients and improve the extubation process.Clinical Relevance - This establishes the characterization of success and failure patients in the extubation process. © 2021 IEEE.

JTD Keywords: classification, recognition, Airway extubation, Artificial ventilation, Clinical practices, Clinical process, Diaphragm, Diaphragm muscle, Diaphragms, Electrodes, Electromyographic, Extubation, Frequency domain analysis, Human, Humans, Maximum differences, Mechanical ventilation, New protocol, Respiration, artificial, Respiratory system, Risk of failure, Spontaneous breathing, Surface electrode, Surface emg signals, Thorax, Ventilation, Ventilator weaning


Calo, Annalisa, Eleta-Lopez, Aitziber, Ondarcuhu, Thierry, Verdaguer, Albert, Bittner, Alexander M, (2021). Nanoscale wetting of single viruses Molecules 26, 5184

The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ⁓1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.

JTD Keywords: amplitude-modulation am-afm, atomic-force microscopy, capillary, force reconstruction, multifrequency afm, nanoscale wetting, persistence, reconstruction, relative-humidity, surfaces, tobacco mosaic virus (tmv), tobamovirus, transmission, water, Amplitude-modulation am-afm, Force reconstruction, Multifrequency afm, Nanoscale wetting, Tobacco mosaic virus (tmv), Tobacco mosaic virus (tmv), nanoscale wetting, Tobacco-mosaic-virus


Andreu, I, Falcones, B, Hurst, S, Chahare, N, Quiroga, X, Le Roux, AL, Kechagia, Z, Beedle, AEM, Elosegui-Artola, A, Trepat, X, Farre, R, Betz, T, Almendros, I, Roca-Cusachs, P, (2021). The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening Nature Communications 12, 4229

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved. Cells sense mechanical forces from their environment, but the precise mechanical variable sensed by cells is unclear. Here, the authors show that cells can sense the rate of force application, known as the loading rate, with effects on YAP nuclear localization and cytoskeletal stiffness remodelling.

JTD Keywords: Actin cytoskeleton, Actin filament, Actin-filament, Adhesion, Animal, Animals, Atomic force microscopy, Breathing, Cell, Cell adhesion, Cell culture, Cell nucleus, Cells, cultured, Cytoplasm, Extracellular-matrix, Fibroblast, Fibroblasts, Fibronectin, Frequency, Gene knockdown, Gene knockdown techniques, Genetics, Germfree animal, Integrin, Intracellular signaling peptides and proteins, Knockout mouse, Lung, Male, Mechanotransduction, Mechanotransduction, cellular, Metabolism, Mice, Mice, knockout, Microscopy, atomic force, Mouse, Optical tweezers, Paxillin, Physiology, Primary cell culture, Pxn protein, mouse, Rat, Rats, Rats, sprague-dawley, Respiration, Signal peptide, Softening, Specific pathogen-free organisms, Sprague dawley rat, Stress, Substrate, Substrate rigidity, Talin, Talin protein, mouse, Tln2 protein, mouse, Traction, Transmission, Ultrastructure, Yap1 protein, rat


Hall, Jocelin Isabel, Lozano, Manuel, Estrada-Petrocelli, Luis, Birring, Surinder, Turner, Richard, (2020). The present and future of cough counting tools Journal of Thoracic Disease 12, (9), 5207-5223

The widespread use of cough counting tools has, to date, been limited by a reliance on human input to determine cough frequency. However, over the last two decades advances in digital technology and audio capture have reduced this dependence. As a result, cough frequency is increasingly recognised as a measurable parameter of respiratory disease. Cough frequency is now the gold standard primary endpoint for trials of new treatments for chronic cough, has been investigated as a marker of infectiousness in tuberculosis (TB), and used to demonstrate recovery in exacerbations of chronic obstructive pulmonary disease (COPD). This review discusses the principles of automatic cough detection and summarises key currently and recently used cough counting technology in clinical research. It additionally makes some predictions on future directions in the field based on recent developments. It seems likely that newer approaches to signal processing, the adoption of techniques from automatic speech recognition, and the widespread ownership of mobile devices will help drive forward the development of real-time fully automated ambulatory cough frequency monitoring over the coming years. These changes should allow cough counting systems to transition from their current status as a niche research tool in chronic cough to a much more widely applicable method for assessing, investigating and understanding respiratory disease.

JTD Keywords: Cough, Cough monitor, Cough frequency


Lozano-García, M., Davidson, C. M., Jané, R., (2019). Analysis of tracheal and pulmonary continuous adventitious respiratory sounds in asthma Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 4930-4933

Continuous adventitious sounds (CAS) are commonly observed in obstructive pulmonary diseases and are of great clinical interest. However, their evaluation is generally subjective. We have previously developed an automatic CAS segmentation and classification algorithm for CAS recorded on the chest surface. The aim of this study is to establish whether these pulmonary CAS can be identified in a similar way using a tracheal microphone. Respiratory sounds were originally recorded from 25 participants using five contact microphones, four on the chest and one on the trachea, during three progressive respiratory maneuvers. In this work CAS component detection was performed on the tracheal channel using our automatic algorithm based on the Hilbert spectrum. The tracheal CAS detected were then compared to the previously analyzed pulmonary CAS. The sensitivity of CAS identification was lower at the tracheal microphone, with CAS that appeared simultaneously in all four pulmonary recordings more likely to be identified in the tracheal recordings. These observations could be due to the CAS being obscured by the lower SNR present in the tracheal recordings or not being transmitted through the airways to the trachea. Further work to optimize the algorithm for the tracheal recordings will be conducted in the future.

JTD Keywords: Microphones, Lung, Diseases, Time-frequency analysis, Spectrogram, Sensitivity


Estrada, L., Sarlabous, L., Lozano-García, M., Jané, R., Torres, A., (2019). Neural offset time evaluation in surface respiratory signals during controlled respiration Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 2344-2347

The electrical activity of the diaphragm measured by surface electromyography (sEMGdi) provides indirect information on neural respiratory drive. Moreover, it allows evaluating the ventilatory pattern from the onset and offset (ntoff) estimation of the neural inspiratory time. sEMGdi amplitude variation was quantified using the fixed sample entropy (fSampEn), a less sensitive method to the interference from cardiac activity. The detection of the ntoff is controversial, since it is located in an intermediate point between the maximum value and the cessation of sEMGdi inspiratory activity, evaluated by the fSampEn. In this work ntoff detection has been analyzed using thresholds between 40% and 100 % of the fSampEn peak. Furthermore, fSampEn was evaluated analyzing the r parameter from 0.05 to 0.6, using a m equal to 1 and a sliding window size equal to 250 ms. The ntoff has been compared to the offset time (toff) obtained from the airflow during a controlled respiratory protocol varying the fractional inspiratory time from 0.54 to 0.18 whilst the respiratory rate was constant at 16 bpm. Results show that the optimal threshold values were between 66.0 % to 77.0 % of the fSampEn peak value. r values between 0.25 to 0.50 were found suitable to be used with the fSampEn.

JTD Keywords: Protocols, Low pass filters, Electrodes, Standards, Band-pass filters, Muscles, Cutoff frequency


Castillo, Y., Blanco, D., Whitney, J., Mersky, B., Jané, R., (2017). Characterization of a tooth microphone coupled to an oral appliance device: A new system for monitoring OSA patients Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1543-1546

Obstructive sleep apnea (OSA) is a highly prevalent chronic disease, especially in elderly and obese populations. Despite constituting a serious health, social and economic problem, most patients remain undiagnosed and untreated due to limitations in current equipment. In this work, we propose a novel method to diagnose OSA and monitor therapy adherence and effectiveness at home in a non-invasive and inexpensive way: combining acoustic analysis of breathing and snoring sounds with oral appliance therapy (OA). Audiodontics has introduced a new sensor, a tooth microphone coupled to an OA device, which is the main pillar of this system. The objective of this work is to characterize the response of this sensor, comparing it with a commercial tracheal microphone (Biopac transducer). Signals containing OSA-related sounds were acquired simultaneously with the two microphones for that purpose. They were processed and analyzed in time, frequency and time-frequency domains, in a custom MATLAB interface. We carried out a single-event approach focused on breaths, snores and apnea episodes. We found that the quality of the signals obtained by both microphones was quite similar, although the tooth microphone spectrum concentrated more energy at the high-frequency band. This opens a new field of study about high-frequency components of snores and breathing sounds. These characteristics, together with its intraoral position, wireless option and combination with customizable OAs, give the tooth microphone a great potential to reduce the impact of sleep disorders, by enabling prompt detection and continuous monitoring of patients at home.

JTD Keywords: Microphones, Teeth, Sleep apnea, Time-frequency analysis, Signal to noise ratio, Monitoring, Acoustics


Schulz, S., Legorburu Cladera, B., Giraldo, B., Bolz, M., Bar, K. J., Voss, A., (2017). Neuronal desynchronization as marker of an impaired brain network Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 2251-2254

Synchronization is a central key feature of neural information processing and communication between different brain areas. Disturbance of oscillatory brain rhythms and decreased synchronization have been associated with different disorders including schizophrenia. The aim of this study was to investigate whether synchronization (in relaxed conditions with no stimuli) between different brain areas within the delta, theta, alpha (alpha1, alpha2), beta (beta1, beta2), and gamma bands is altered in patients with a neurological disorder in order to generate significant cortical enhancements. To achieve this, we investigated schizophrenic patients (SZO; N=17, 37.5±10.4 years, 15 males) and compared them to healthy subjects (CON; N=21, 36.7±13.4 years, 15 males) applying the phase locking value (PLV). We found significant differences between SZO and CON in different brain areas of the theta, alpha1, beta2 and gamma bands. These areas are related to the central and parietal lobes for the theta band, the parietal lobe for the alpha1, the parietal and frontal for the beta2 and the frontal-central for the gamma band. The gamma band revealed the most significant differences between CON and SZO. PLV were 61.7% higher on average in SZO in most of the clusters when compared to CON. The related brain areas are directly related to cognition skills which are proved to be impaired in SZO. The results of this study suggest that synchronization in SZO is also altered when the patients were not asked to perform a task that requires their cognitive skills (i.e., no stimuli are applied - in contrast to other findings).

JTD Keywords: Synchronization, Electroencephalography, Electrodes, Brain, Time series analysis, Oscillators, Frequency synchronization


Trapero, J. I., Arizmendi, C. J., Gonzalez, H., Forero, C., Giraldo, B. F., (2017). Nonlinear dynamic analysis of the cardiorespiratory system in patients undergoing the weaning process Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 3493-3496

In this work, the cardiorespiratory pattern of patients undergoing extubation process is studied. First, the respiratory and cardiac signals were resampled, next the Symbolic Dynamics (SD) technique was implemented, followed of a dimensionality reduction applying Forward Selection (FS) and Moving Window with Variance Analysis (MWVA) methods. Finally, the Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM) classifiers were used. The study analyzed 153 patients undergoing weaning process, classified into 3 groups: Successful Group (SG: 94 patients), Failed Group (FG: 39 patients), and patients who had been successful during the extubation and had to be reintubated before 48 hours, Reintubated Group (RG: 21 patients). According to the results, the best classification present an accuracy higher than 88.98 ± 0.013% in all proposed combinations.

JTD Keywords: Support vector machines, Standards, Time series analysis, Resonant frequency, Nonlinear dynamical systems, Ventilation


Lozano-Garcia, M., Fiz, J. A., Jané, R., (2016). Performance evaluation of the Hilbert–Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization Signal Processing , 120, 99-116

Abstract The use of the Hilbert–Huang transform in the analysis of biomedical signals has increased during the past few years, but its use for respiratory sound (RS) analysis is still limited. The technique includes two steps: empirical mode decomposition (EMD) and instantaneous frequency (IF) estimation. Although the mode mixing (MM) problem of EMD has been widely discussed, this technique continues to be used in many RS analysis algorithms. In this study, we analyzed the MM effect in RS signals recorded from 30 asthmatic patients, and studied the performance of ensemble EMD (EEMD) and noise-assisted multivariate EMD (NA-MEMD) as means for preventing this effect. We propose quantitative parameters for measuring the size, reduction of MM, and residual noise level of each method. These parameters showed that EEMD is a good solution for MM, thus outperforming NA-MEMD. After testing different IF estimators, we propose Kay׳s method to calculate an EEMD-Kay-based Hilbert spectrum that offers high energy concentrations and high time and high frequency resolutions. We also propose an algorithm for the automatic characterization of continuous adventitious sounds (CAS). The tests performed showed that the proposed EEMD-Kay-based Hilbert spectrum makes it possible to determine CAS more precisely than other conventional time-frequency techniques.

JTD Keywords: Hilbert–Huang transform, Ensemble empirical mode decomposition, Instantaneous frequency, Respiratory sounds, Continuous adventitious sounds


Estrada, L., Torres, A., Garcia-Casado, J., Sarlabous, L., Prats-Boluda, G., Jané, R., (2016). Time-frequency representations of the sternocleidomastoid muscle electromyographic signal recorded with concentric ring electrodes Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 3785-3788

The use of non-invasive methods for the study of respiratory muscle signals can provide clinical information for the evaluation of the respiratory muscle function. The aim of this study was to evaluate time-frequency characteristics of the electrical activity of the sternocleidomastoid muscle recorded superficially by means of concentric ring electrodes (CREs) in a bipolar configuration. The CREs enhance the spatial resolution, attenuate interferences, as the cardiac activity, and also simplify the orientation problem associated to the electrode location. Five healthy subjects underwent a respiratory load test in which an inspiratory load was imposed during the inspiratory phase. During the test, the electromyographic signal of the sternocleidomastoid muscle (EMGsc) and the inspiratory mouth pressure (Pmouth) were acquired. Time-frequency characteristics of the EMGsc signal were analyzed by means of eight time-frequency representations (TFRs): the spectrogram (SPEC), the Morlet scalogram (SCAL), the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CHWD), two generalized exponential distributions (GED1 and GED2), the Born-Jordan distribution (BJD) and the Cone-Kernel distribution (CKD). The instantaneous central frequency of the EMGsc showed an increasing behavior during the inspiratory cycle and with the increase of the inspiratory load. The bilinear TFRs (WVD, CHWD, GEDs and BJD) were less sensitive to cardiac activity interference than classical TFRs (SPEC and SCAL). The GED2 was the TFR that shown the best results for the characterization of the instantaneous central frequency of the EMGsc.

JTD Keywords: Electrodes, Interference, Kernel, Mouth, Muscles, Spectrogram, Time-frequency analysis


Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994

Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.

JTD Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards


Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798

Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.

JTD Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis


Hernando, D., Alcaine, A., Pueyo, E., Laguna, P., Orini, M., Arcentales, A., Giraldo, B., Voss, A., Bayes-Genis, A., Bailon, R., (2013). Influence of respiration in the very low frequency modulation of QRS slopes and heart rate variability in cardiomyopathy patients CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 117-120

This work investigates the very low frequency (VLF) modulation of QRS slopes and heart rate variability (HRV). Electrocardiogram (ECG) and respiratory flow signal were acquired from patients with dilated cardiomyopathy and ischemic cardiomyopathy. HRV as well as the upward QRS slope (IUS) and downward QRS slope (IDS) were extracted from the ECG. The relation between HRV and QRS slopes in the VLF band was measured using ordinary coherence in 5-minute segments. Partial coherence was then used to remove the influence that respiration simultaneously exerts on HRV and QRS slopes. A statistical threshold was determined, below which coherence values were considered not to represent a linear relation. 7 out of 276 segments belonging to 5 out of 29 patients for IUS and 10 segments belonging to 5 patients for IDS presented a VLF modulation in QRS slopes, HRV and respiration. In these segments spectral coherence was statistically significant, while partial coherence decreased, indicating that the coupling HRV and QRS slopes was related to respiration. 4 segments had a partial coherence value below the threshold for IUS, 3 segments for IDS. The rest of the segments also presented a notable decrease in partial coherence, but still above the threshold, which means that other non-linearly effects may also affect this modulation.

JTD Keywords: diseases, electrocardiography, feature extraction, medical signal processing, pneumodynamics, statistical analysis, ECG, QRS slopes, cardiomyopathy patients, dilated cardiomyopathy, electrocardiogram, feature extraction, heart rate variability, ischemic cardiomyopathy, ordinary coherence, partial coherence value, respiration, respiratory flow signal acquisition, spectral coherence, statistical threshold, time 5 min, very low frequency modulation, Coherence, Educational institutions, Electrocardiography, Frequency modulation, Heart rate variability


Jané, R., Lazaro, J., Ruiz, P., Gil, E., Navajas, D., Farre, R., Laguna, P., (2013). Obstructive Sleep Apnea in a rat model: Effects of anesthesia on autonomic evaluation from heart rate variability measures CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 1011-1014

Rat model of Obstructive Sleep Apnea (OSA) is a realistic approach for studying physiological mechanisms involved in sleep. Rats are usually anesthetized and autonomic nervous system (ANS) could be blocked. This study aimed to assess the effect of anesthesia on ANS activity during OSA episodes. Seven male Sprague-Dawley rats were anesthetized intraperitoneally with urethane (1g/kg). The experiments were conducted applying airway obstructions, simulating 15s-apnea episodes for 15 minutes. Five signals were acquired: respiratory pressure and flow, SaO2, ECG and photoplethysmography (PPG). In total, 210 apnea episodes were studied. Normalized power spectrum of Pulse Rate Variability (PRV) was analyzed in the Low Frequency (LF) and High Frequency (HF) bands, for each episode in consecutive 15s intervals (before, during and after the apnea). All episodes showed changes in respiratory flow and SaO2 signal. Conversely, decreases in the amplitude fluctuations of PPG (DAP) were not observed. Normalized LF presented extremely low values during breathing (median=7,67%), suggesting inhibition of sympathetic system due to anesthetic effect. Subtle increases of LF were observed during apnea. HRV and PPG analysis during apnea could be an indirect tool to assess the effect and deep of anesthesia.

JTD Keywords: electrocardiography, fluctuations, medical disorders, medical signal detection, medical signal processing, neurophysiology, photoplethysmography, pneumodynamics, sleep, ECG, SaO2 flow, SaO2 signal, airway obstructions, amplitude fluctuations, anesthesia effects, anesthetized nervous system, autonomic evaluation, autonomic nervous system, breathing, heart rate variability, high-frequency bands, low-frequency bands, male Sprague-Dawley rats, normalized power spectrum, obstructive sleep apnea, photoplethysmography, physiological mechanisms, pulse rate variability, rat model, respiratory flow, respiratory pressure, signal acquisition, sympathetic system inhibition, time 15 min, time 15 s, Abstracts, Atmospheric modeling, Computational modeling, Electrocardiography, Rats, Resonant frequency


Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Study of the oscillatory breathing pattern in elderly patients Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 5228-5231

Some of the most common clinical problems in elderly patients are related to diseases of the cardiac and respiratory systems. Elderly patients often have altered breathing patterns, such as periodic breathing (PB) and Cheyne-Stokes respiration (CSR), which may coincide with chronic heart failure. In this study, we used the envelope of the respiratory flow signal to characterize respiratory patterns in elderly patients. To study different breathing patterns in the same patient, the signals were segmented into windows of 5 min. In oscillatory breathing patterns, frequency and time-frequency parameters that characterize the discriminant band were evaluated to identify periodic and non-periodic breathing (PB and nPB). In order to evaluate the accuracy of this characterization, we used a feature selection process, followed by linear discriminant analysis. 22 elderly patients (7 patients with PB and 15 with nPB pattern) were studied. The following classification problems were analyzed: patients with either PB (with and without apnea) or nPB patterns, and patients with CSR versus PB, CSR versus nPB and PB versus nPB patterns. The results showed 81.8% accuracy in the comparisons of nPB and PB patients, using the power of the modulation peak. For the segmented signal, the power of the modulation peak, the frequency variability and the interquartile ranges provided the best results with 84.8% accuracy, for classifying nPB and PB patients.

JTD Keywords: cardiovascular system, diseases, feature extraction, geriatrics, medical signal processing, oscillations, pneumodynamics, signal classification, time-frequency analysis, Cheyne-Stokes respiration, apnea, cardiac systems, chronic heart failure, classification problems, discriminant band, diseases, elderly patients, feature selection process, frequency variability, interquartile ranges, linear discriminant analysis, nonperiodic breathing, oscillatory breathing pattern, periodic breathing, respiratory How signal, respiratory systems, signal segmentation, time 5 min, time-frequency parameters, Accuracy, Aging, Frequency modulation, Heart, Senior citizens, Time-frequency analysis


Antelis, J.M., Montesano, L., Giralt, X., Casals, A., Minguez, J., (2012). Detection of movements with attention or distraction to the motor task during robot-assisted passive movements of the upper limb Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6410-6413

Robot-assisted rehabilitation therapies usually focus on physical aspects rather than on cognitive factors. However, cognitive aspects such as attention, motivation, and engagement play a critical role in motor learning and thus influence the long-term success of rehabilitation programs. This paper studies motor-related EEG activity during the execution of robot-assisted passive movements of the upper limb, while participants either: i) focused attention exclusively on the task; or ii) simultaneously performed another task. Six healthy subjects participated in the study and results showed lower desynchronization during passive movements with another task simultaneously being carried out (compared to passive movements with exclusive attention on the task). In addition, it was proved the feasibility to distinguish between the two conditions.

JTD Keywords: Electrodes, Electroencephalography, Induction motors, Medical treatment, Robot sensing systems, Time frequency analysis, Biomechanics, Cognition, Electroencephalography, Medical robotics, Medical signal detection, Medical signal processing, Patient rehabilitation, Attention, Cognitive aspects, Desynchronization, Engagement, Motivation, Motor learning, Motor task, Motor-related EEG activity, Physical aspects, Robot-assisted passive movement detection, Robot-assisted rehabilitation therapies, Upper limb


Sarlabous, L., Torres, A., Fiz, J. A., Morera, J., Jané, R., (2012). Evaluation and adaptive attenuation of the cardiac vibration interference in mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 3400-3403

The study of the mechanomyographic signal of the diaphragm muscle (MMGdi) is a promising technique in order to evaluate the respiratory muscles effort. The relationship between amplitude and frequency parameters of this signal with the respiratory effort performed during respiration is of great interest for researchers and physicians due to its diagnostic potentials. However, MMGdi signals are frequently contaminated by a cardiac vibration or mechanocardiographic (MCG) signal. An adaptive noise cancellation (ANC) can be used to reduce the MCG interference in the recorded MMGdi activity. In this paper, it is evaluated the proposed ANC scheme by means of a synthetic MMGdi signal with a controlled MCG interference. The Pearson's correlation coefficient (PCC) between both root mean square (RMS) and mean frequency (fm) of the synthetic MMGdi signal are considerably reduced with the presence of cardiac vibration noise (from 0.95 to 0.87, and from 0.97 to 0.76, respectively). With the ANC algorithm proposed the effect of the MCG noise on the amplitude and frequency of MMG parameters is reduced considerably (PCC of 0.93 and 0.97 for the RMS and fm, respectively). The ANC method proposed in this work is an interesting technique to attenuate the cardiac interference in respiratory MMG signals. Further investigation should be carried out to evaluate the performance of the ANC algorithm in real MMGdi signals.

JTD Keywords: Adaptive filters, Frequency modulation, Interference, Muscles, Noise cancellation, Vibrations, Cardiology, Medical signal processing, Muscle, Signal denoising, ANC algorithm, MCG interference, Pearson correlation coefficient, Adaptive noise cancellation, Cardiac vibration interference, Cardiac vibration noise, Diaphragm muscle, Mechanocardiographic signal, Mechanomyographic signals, Respiratory muscles effort


Garde, A., Giraldo, B.F., Jané, R., Latshang, T.D., Turk, A.J., Hess, T., Bosch, M-.M., Barthelmes, D., Hefti, J.P., Maggiorini, M., Hefti, U., Merz, T.M., Schoch, O.D., Bloch, K.E., (2012). Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 707-710

High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1st and 2nd ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO2 and periodic breathing cycles significantly increased with acclimatization (p-value <; 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO2, through a significant negative correlation (p-value <; 0.01). Higher Pm is observed at climbing periods visually labeled as PB with >; 5 periodic breathing cycles through a significant positive correlation (p-value <; 0.01). Our data demonstrate that quantification of the respiratory volum- signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.

JTD Keywords: Frequency domain analysis, Frequency modulation, Heart, Sleep apnea, Ventilation, Visualization, Cardiology, Medical disorders, Medical signal processing, Plethysmography, Pneumodynamics, Sensitivity analysis, Sleep, Spectral analysis, Cheyne-Stokes respiration, Climbing periods, Dataset, Heart failure patients, High altitude PB, High altitude periodic breathing, Hypobaric hypoxia, Linear discriminant analysis, Pathophysiologic aspects, Physical activity, Physiologic mechanisms, Power spectral density, Receiver operating characteristic curve, Respiratory control, Respiratory frequency, Respiratory inductive plethysmography, Respiratory pattern, Respiratory volume signal, Sleep apnea, Spectral analysis, Spectral parameters


Sellares, J., Acerbi, I., Loureiro, H., Dellaca, R. L., Ferrer, M., Torres, A., Navajas, D., Farre, R., (2009). Respiratory impedance during weaning from mechanical ventilation in a mixed population of critically ill patients British Journal of Anaesthesia , 103, (6), 828-832

Worsening of respiratory mechanics during a spontaneous breathing trial (SBT) has been traditionally associated with weaning failure, although this finding is based on studies with chronic obstructive pulmonary disease patients only. The aim of our study was to assess the course of respiratory impedance non-invasively measured by forced oscillation technique (FOT) during a successful and failed SBT in a mixed population. Thirty-four weaning trials were reported in 29 consecutive mechanically ventilated patients with different causes of initiation of ventilation. During the SBT, the patient was breathing through a conventional T-piece connected to the tracheal tube. FOT (5 Hz, +/- 1 cm H2O, 30 s) was applied at 5, 10, 15, 20, 25, and 30 min. Respiratory resistance (Rrs) and reactance (Xrs) were computed from pressure and flow measurements. The frequency to tidal volume ratio f/V-t was obtained from the flow signal. At the end of the trial, patients were divided into two groups: SBT success and failure. Mixed model analysis showed no significant differences in Rrs and Xrs over the course of the SBT, or between the success (n=16) and the failure (n=18) groups. In contrast, f/V-t was significantly (P < 0.001) higher in the failure group. Worsening of respiratory impedance measured by FOT is not a common finding during a failed SBT in a typically heterogeneous intensive care unit population of mechanically ventilated patients.

JTD Keywords: Ventilation, High frequency oscillation, Ventilation, Mechanical, Ventilation, Respiratory impedance


Cho, S., Castellarnau, M., Samitier, J., Thielecke, H., (2008). Dependence of impedance of embedded single cells on cellular behaviour Sensors 8, (2), 1198-1211

Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour.

JTD Keywords: Frequency-domain, Spectroscopy, Erythrocytes, Biosensor, Membrane, System