DONATE

El reloj interno de nuestras células se ve afectado por las fuerzas mecánicas

Investigadores del IBEC demuestran cómo las fuerzas físicas desregulan el reloj circadiano de las células, el mecanismo que controla los cambios fisiológicos cada 24h. El hallazgo puede ayudar a entender mejor el envejecimiento y ciertas enfermedades, como algunos tipos de cáncer, en que el reloj circadiano deja de funcionar correctamente. 

A doctor in medical gloves holds an hourglass.

Los seres vivos poseen un ciclo biológico interno, conocido como reloj circadiano, que les permite adaptarse a las modificaciones ambientales derivadas de la rotación de la Tierra. Actividades fisiológicas cruciales como el sueño, el metabolismo, las variaciones hormonales, de temperatura corporal y de tensión arterial están reguladas por ese reloj interno. En 2017 el Premio Nobel de Medicina se concedió a los investigadores que realizaron importantes hallazgos sobre los mecanismos que lo controlan.

El correcto funcionamiento del reloj es fundamental para que los seres vivos se puedan anticipar a los cambios entre el día y la noche, y adaptar su fisiología para hacerles frente. Un ejemplo del desajuste entre el reloj circadiano y el ambiente externo es el trastorno conocido como “jet lag”, que se traduce en cambios fisiológicos en las personas que viajan por diferentes husos horarios en pocas horas. Ahora, un grupo de investigadores liderados por Xavier Trepat, profesor de investigación ICREA y líder de grupo en el IBEC, han dado un paso más para descifrar su funcionamiento y han descrito el mecanismo por el cual el reloj circadiano de las células se desregula en respuesta a fuerzas físicas externas. El trabajo, fruto de una colaboración entre el IBEC y la Universidad Pompeu Fabra en Barcelona, se publicó ayer en la revista Journal of Cell Biology.

Proteína YAP: clave en la desregulación del reloj interno en respuesta a fuerzas físicas

“Recientemente se ha descrito que las fuerzas mecánicas son capaces de desregular el reloj circadiano. Lo que mostramos ahora es el mecanismo molecular por el que eso sucede”.

«Recientemente se ha descrito que las fuerzas mecánicas son capaces de desregular el reloj circadiano. Lo que mostramos ahora es el mecanismo molecular por el que eso sucede»

Juan F. Abenza, investigador del IBEC y co-primer autor del estudio.

A través de experimentos in vitro utilizando fibroblastos de ratón, células del tejido conectivo encargadas entre otras cosas de mantener su estructura, han visto que la proteína YAP (del inglés Yes-Associated Protein), es la clave en la desregulación del reloj circadiano. Esta misma proteína también controla la proliferación celular y está relacionada con el desarrollo de metástasis en diferentes tipos de cáncer.

La proteína YAP es el punto hacia donde confluyen las señales mecánicas externas y que hace que las células sean capaces de percibir la rigidez de su entorno. YAP se encuentra en una forma inactiva en el citoplasma de las células, y en respuesta a estímulos mecánicos, se activa y entra en el núcleo, donde actúa concretamente sobre algunos genes “diana” iniciando una respuesta al estímulo inicial.

Los investigadores han utilizado técnicas avanzadas de microscopía confocal, microfabricación y análisis customizados por ordenador para estudiar el funcionamiento del reloj circadiano en células individuales. Han aplicado perturbaciones mecánicas, bioquímicas y genéticas de manera controlada sobre las células y han visto que uno de esos genes “diana” de YAP es Rev- erbα, un gen clave en el control del reloj circadiano.

“Cuando una fuerza física afecta la célula, la proteína YAP se va del citoplasma al núcleo y afecta el gen Rev-erbα, perturbando las oscilaciones circadianas”.

Leone Rossetti, investigador del IBEC y co-primer autor del estudio.

La observación de que YAP altera el ritmo de las células añade una nueva dimensión a la regulación del reloj circadiano y aporta elementos que pueden contribuir a explicar porque deja de funcionar correctamente en células cancerosas y en proceso de envejecimiento.

Xavier Trepat, líder de la investigación, también es profesor en la Universidad de Barcelona (UB) y miembro del Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN).


Artículo referenciado:

Juan F. Abenza, Leone Rossetti, Malèke Mouelhi, Javier Burgués, Ion Andreu, Keith Kennedy, Pere Roca-Cusachs, Santiago Marco, Jordi García-Ojalvo, Xavier Trepat. Mechanical control of the mammalian circadian clock via YAP/TAZ and TEAD. J Cell Biol (2023). DOI: 10.1083/jcb.202209120