DONATE

Protein Phase Transitions in Health and Disease

About

Our lab aims at understanding how genetic changes between individuals can or cannot result in disease by quantifying the impact mutations have on protein aggregation and toxicity. 

We are particularly interested in amino acid sequences that can adopt different conformations and undergo a process of self-assembly which results in distinct physical states.

The aggregation of proteins into insoluble amyloid fibrils is a key process in the pathogenesis of a number of neurodegenerative conditions, such as Parkinson’s disease or Amyotrophic Lateral Sclerosis. However, examples of functional amyloid are also widespread in nature, especially across bacteria and fungi. Our work aims at systematically deciphering the sequence-dependencies of the process of aggregation in both functional and pathological contexts.

Recently, it has become clear that proteins can also self-assemble into a more dynamic and reversible state through a process of liquid de-mixing which is thought to contribute to the organization of the intracellular space. However, also for proteins undergoing liquid de-mixing, the balance between function and dysfunction is far from clear. It is also unknown if, in vivo, liquid de-mixed states are precursors of insoluble amyloid-like states, and to which extent proteins are structured once in the liquid state.

How we do it

In order to understand how mutations affect these delicate equilibria and to elucidate when and why a sequence starts aggregating or becomes toxic for the cell, our lab integrates experimental and computational approaches in different model systems. Recently, we have developed massively parallel approaches based on Deep Mutational Scanning (DMS) to quantify the toxicity or the aggregation propensity of hundreds of thousands of protein sequences in vivo. We believe that by portraying the full landscape of the effects of mutations in a specific protein domain we can reach a more systematic and comprehensive understanding of the determinants of amyloid formation and toxicity. 

We are also interested in developing similar high-throughput strategies to measure in vivo the effect of mutations on the physical state the proteins acquire upon mutation (diffuse, liquid de-mixed, insoluble) and to study the interactions between mutations to report on the conformations proteins adopt as they self-assemble. Overall, the exhaustive datasets we are generating will give mechanistic insights on the process of protein aggregation, while also reporting on specific conformations and mechanisms leading to cellular toxicity.  We also aim at using the datasets we generate to develop novel predictors of protein aggregation.

We focus on all classical amyloids, such as the amyloid-beta peptide, the main component of the plaques found in Alzheimer’s disease patients, but also on functional amyloids and on a less characterized part of the human proteome which is able to undergo liquid de-mixing: prion-like domains. Just like all disordered protein regions, prion-like domains are particularly difficult to study in vitro. In this perspective, in vivo approaches such as the ones we develop, can provide a unique opportunity to investigate these sequences in a systematic way.

Map of the effect of mutations on toxicity of the TDP-43 Prion-like Domain.
Percentage of substitutions and insertions increasing or decreasing amyloid formation of the Amyloid-Beta peptide, visualized on the cross-section of ex-vivo fibrils (7Q4M).

Staff

Benedetta Bolognesi

Group Leader
+34 934 035094 (Lab)
bbolognesiibecbarcelona.eu

Projects

NATIONAL GRANTSFINANCERPI
AMYNDEL · Deciphering the consequences of different types of genetic variation in amyloid forming sequences by deep mutagenesis ( 2022-2025)MICIU · Generación Conocimiento: Proyectos I+DBenedetta Bolognesi
DeepAmyloids · Massively parallel mutagenesis to understand, predict and prevent amyloid nucleation in neurodegenerative diseases (2021-2024)Obra Social La CaixaBenedetta Bolognesi

FINISHED PROJECTSFINANCERPI
Poly-STOP · Developing modulators of protein aggregation in polyglutamine diseases by deep mutational scanning (2021-2022)BIST · Barcelona Institute of Science and TechnologyBenedetta Bolognesi
PRIOMUT · Escaneado exhaustivo de mutaciones en un dominio priónico para entender la toxicidad inducida por proteínas (2019-2021)MICIU / Retos investigación: Proyectos I+DBenedetta Bolognesi

Publications

Equipment

  • Thermo MaxQ 8000

Collaborations

  • Priyanka Narayan
    NIH-NIDDK
  • Xavier Salvatella
    IRB, Barcelona
  • Fran Supek
    IRB, Barcelona
  • Ben Lehner
    CRG, Barcelona
  • Luke McAlary /Justin Yerbury
    University of Wollongong, Australia

News

Benedetta Bolognesi, líder de grupo del IBEC, aparece en distintos medios por un reciente estudio publicado en la revista eLife. En el estudio muestran el primer mapa con miles de mutaciones en el gen que codifica el péptido beta amiloide para predecir qué personas son más propensas a desarrollar la enfermedad de Alzheimer.

Un paso más hacia la detección precoz del alzhéimer

Benedetta Bolognesi, líder de grupo del IBEC, aparece en distintos medios por un reciente estudio publicado en la revista eLife. En el estudio muestran el primer mapa con miles de mutaciones en el gen que codifica el péptido beta amiloide para predecir qué personas son más propensas a desarrollar la enfermedad de Alzheimer.

Un estudio publicado en la revista eLife analiza todas las posibles mutaciones en el péptido beta amiloide para determinar cómo influyen en su agregación y formación placas, un sello patológico de la enfermedad de Alzheimer. También ayudará a los investigadores a comprender mejor los mecanismos biológicos que controlan la aparición de la enfermedad.

El primer mapa completo de mutaciones en la placa amiloide abre nuevas vías para la detección temprana de la enfermedad de Alzheimer

Un estudio publicado en la revista eLife analiza todas las posibles mutaciones en el péptido beta amiloide para determinar cómo influyen en su agregación y formación placas, un sello patológico de la enfermedad de Alzheimer. También ayudará a los investigadores a comprender mejor los mecanismos biológicos que controlan la aparición de la enfermedad.

La Alcaldesa de Barcelona, Ada Colau, visitó el pasado viernes las instalaciones del IBEC para conocer, de la mano de nuestro Director y de un grupo de investigadoras e investigadores, cómo la bioingeniería puede ayudar a encontrar soluciones a problemas de salud como la COVID19, el cáncer, o las enfermedades degenerativas. Cuando a principios de 2020, más de 200 científicos se reunieron en la Pedrera de Barcelona para hablar del presente y futuro de la bioingeniería, nadie se imaginaba que el mundo viviría la primera pandemia del siglo XXI y que la ciencia tomaría más importancia que nunca.

El IBEC recibe la visita de la Alcaldesa de Barcelona interesada por la investigación en Covid19

La Alcaldesa de Barcelona, Ada Colau, visitó el pasado viernes las instalaciones del IBEC para conocer, de la mano de nuestro Director y de un grupo de investigadoras e investigadores, cómo la bioingeniería puede ayudar a encontrar soluciones a problemas de salud como la COVID19, el cáncer, o las enfermedades degenerativas. Cuando a principios de 2020, más de 200 científicos se reunieron en la Pedrera de Barcelona para hablar del presente y futuro de la bioingeniería, nadie se imaginaba que el mundo viviría la primera pandemia del siglo XXI y que la ciencia tomaría más importancia que nunca.

Investigadores del IBEC y del CRG en Barcelona emplean una técnica denominada ‘mutagénesis de alto rendimiento’ para estudiar la esclerosis lateral amiotrófica (ELA), obteniendo resultados inesperados Según estos resultados, la agregación de TDP-43 no solo no es perjudicial, sino que en realidad protege las células, lo que modifica lo que se sabía sobre la ELA y abre la puerta a enfoques terapéuticos completamente nuevos. La esclerosis lateral amiotrófica (ELA) es una demoledora enfermedad del sistema nervioso, actualmente incurable, que afecta a las células nerviosas del cerebro y la médula espinal, provocando la pérdida del control muscular y, por lo general, la muerte a los pocos años del diagnóstico. En la ELA, como en otras enfermedades neurodegenerativas, determinados agregados proteicos han sido considerados desde hace tiempo como rasgos distintivos patológicos, sin que esté todavía claro si son la causa real de la enfermedad.

Investigadores realizan miles de mutaciones para comprender mejor la esclerosis lateral amiotrófica

Investigadores del IBEC y del CRG en Barcelona emplean una técnica denominada ‘mutagénesis de alto rendimiento’ para estudiar la esclerosis lateral amiotrófica (ELA), obteniendo resultados inesperados Según estos resultados, la agregación de TDP-43 no solo no es perjudicial, sino que en realidad protege las células, lo que modifica lo que se sabía sobre la ELA y abre la puerta a enfoques terapéuticos completamente nuevos. La esclerosis lateral amiotrófica (ELA) es una demoledora enfermedad del sistema nervioso, actualmente incurable, que afecta a las células nerviosas del cerebro y la médula espinal, provocando la pérdida del control muscular y, por lo general, la muerte a los pocos años del diagnóstico. En la ELA, como en otras enfermedades neurodegenerativas, determinados agregados proteicos han sido considerados desde hace tiempo como rasgos distintivos patológicos, sin que esté todavía claro si son la causa real de la enfermedad.

Jobs

Application Deadline: 24/10/2021Ref: PD-BB The Protein phase Transitions in Health and Disease group at the Institute for Bioengineering of Catalonia (IBEC) is looking for two Postdoctoral Researchers to develop deep mutagenesis projects in the context of amyloid forming proteins. The contract will be within the framework of a larger project funded by La Caixa.

2 Postdoctoral researchers at the Protein Phase Transitions in Health and Disease Research Group

Application Deadline: 24/10/2021Ref: PD-BB The Protein phase Transitions in Health and Disease group at the Institute for Bioengineering of Catalonia (IBEC) is looking for two Postdoctoral Researchers to develop deep mutagenesis projects in the context of amyloid forming proteins. The contract will be within the framework of a larger project funded by La Caixa.