Staff member publications
Deng, LL, Olea, AR, Ortiz-Perez, A, Sun, BB, Wang, JH, Pujals, S, Palmans, ARA, Albertazzi, L, (2024). Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device Small Methods 8, e2301072
The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.© 2024 The Authors. Small Methods published by Wiley-VCH GmbH.
JTD Keywords: 3d cancer cell uptake, Cancer cells, Cell culture, Cell uptake, Cellular uptake, Diseases, Ecm penetration, Extracellular matrices, Extracellular matrix penetration, Functional polymers, Hydrogen bonds, Medical applications, Microfluidics, Microstructure, Nanoparticles, Polymeric nanoparticles, Scpns, Single chains, Single-chain polymeric nanoparticle, Stability, Tumor-on-a-chip, Tumors
Patiño, T, Llacer-Wintle, J, Pujals, S, Albertazzi, L, Sánchez, S, (2024). Unveiling protein corona formation around self-propelled enzyme nanomotors by nanoscopy Nanoscale 16, 2904-2912
The interaction of nanoparticles with biological media is a topic of general interest for drug delivery systems and among those for active nanoparticles, also called nanomotors. Herein, we report the use of super resolution microscopy, in particular, stochastic optical reconstruction microscopy (STORM), to characterize the formation of a protein corona around active enzyme-powered nanomotors. First, we characterized the distribution and number of enzymes on nano-sized particles and characterized their motion capabilities. Then, we incubated the nanomotors with fluorescently labelled serum proteins. Interestingly, we observed a significant decrease of protein corona formation (20%) and different composition, which was studied by proteomic analysis. Moreover, motion was not hindered, as nanomotors displayed enhanced diffusion regardless of the protein corona. Elucidating how active particles interact with biological media and maintain their self-propulsion after protein corona formation will pave the way for the use of these systems in complex biological fluids in biomedicine.; The interaction of self-propelled nanomotors with biological media is of outmost relevance when considering their actuation within biological contexts. Here, we explored how protein corona forms around active nanomotors using STORM.
JTD Keywords: Gold, Impact, Nanoparticle uptake, Plasma, Size, Surface-properties
Olea, AR, Jurado, A, Slor, G, Tevet, S, Pujals, S, De La Rosa, VR, Hoogenboom, R, Amir, RJ, Albertazzi, L, (2023). Reaching the Tumor: Mobility of Polymeric Micelles Inside an In Vitro Tumor-on-a-Chip Model with Dual ECM Acs Applied Materials & Interfaces 15, 59134-59144
Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow high-throughput screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations' capacity to cross the tumor tissue barrier.
JTD Keywords: Extracellular matrix, Microfluidics, Nanoparticle mobility, Polymeric micelles, Tumor-on-a-chip
Andrian T, Muela Y, Delgado L, Albertazzi L, Pujals S, (2023). A super-resolution and transmission electron microscopy correlative approach to study intracellular trafficking of nanoparticles Nanoscale 15, 14615-14627
Nanoparticles (NPs) are used to encapsulate therapeutic cargos and deliver them specifically to the target site. The intracellular trafficking of NPs dictates the NP-cargo distribution within different cellular compartments, and thus governs their efficacy and safety. Knowledge in this field is crucial to understand their biological fate and improve their rational design. However, there is a lack of methods that allow precise localization and quantification of individual NPs within distinct cellular compartments simultaneously. Here, we address this issue by proposing a correlative light and electron microscopy (CLEM) method combining direct stochastic optical reconstruction microscopy (dSTORM) and transmission electron microscopy (TEM). We aim at combining the advantages of both techniques to precisely address NP localization in the context of the cell ultrastructure. Individual fluorescently-labelled poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs were directly visualized by dSTORM and assigned to cellular compartments by TEM. We first tracked NPs along the endo-lysosomal pathway at different time points, then demonstrated the effect of chloroquine on their intracellular distribution (i.e. endosomal escape). The proposed protocol can be applied to fluorescently labelled NPs and/or cargo, including those not detectable by TEM alone. Our studies are of great relevance to obtain important information on NP trafficking, and crucial for the design of more complex nanomaterials aimed at cytoplasmic/nucleic drug delivery.
JTD Keywords: chemistry, delivery, endocytosis, endosomal escape, exocytosis, fluorescence, light, size, tomography, Cellular uptake
Das, P, Pujals, S, Ali, LMA, Gary-Bobo, M, Albertazzi, L, Durand, JO, (2023). Super-resolution imaging of antibody-conjugated biodegradable periodic mesoporous organosilica nanoparticles for targeted chemotherapy of prostate cancer Nanoscale 15, 12008-12024
Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.
JTD Keywords: drug-delivery, nanocapsules, nanomaterials, nanomedicine, release, Silica nanoparticles
Colom-Cadena, M, Davies, C, Sirisi, S, Lee, JE, Simzer, EM, Tzioras, M, Querol-Vilaseca, M, Sánchez-Aced, E, Chang, YY, Holt, K, McGeachan, RI, Rose, J, Tulloch, J, Wilkins, L, Smith, C, Andrian, T, Belbin, O, Pujals, S, Horrocks, MH, Lleó, A, Spires-Jones, TL, (2023). Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain Neuron 111, 2170-+
In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
JTD Keywords: accumulation, alpha-synuclein, array tomography, cognitive impairment, dendritic spines, mouse model, neurodegeneration, neurons, synapses, Alzheimer, Amyloid-beta, Synapse, Tau
Murar, M, Pujals, S, Albertazzi, L, (2023). Multivalent effect of peptide functionalized polymeric nanoparticles towards selective prostate cancer targeting Nanoscale Advances 5, 1378-1385
The concept of selective tumor targeting using nanomedicines has been around for decades; however, no targeted nanoparticle has yet reached the clinic. A key bottleneck is the non-selectivity of targeted nanomedicines in vivo, which is attributed to the lack of characterization of their surface properties, especially the ligand number, thereby calling for robust techniques that allow quantifiable outcomes for an optimal design. Multivalent interactions comprise multiple copies of ligands attached to scaffolds, allowing simultaneous binding to receptors, and they play an important role in targeting. As such, 'multivalent' nanoparticles facilitate simultaneous interaction of weak surface ligands with multiple target receptors resulting in higher avidity and enhanced cell selectivity. Therefore, the study of weak binding ligands for membrane-exposed biomarkers is crucial for the successful development of targeted nanomedicines. Here we carried out a study of a cell targeting peptide known as WQP having weak binding affinity for prostate specific membrane antigen, a known prostate cancer biomarker. We evaluated the effect of its multivalent targeting using polymeric NPs over its monomeric form on the cellular uptake in different prostate cancer cell lines. We developed a method of specific enzymatic digestion to quantify the number of WQPs on NPs having different surface valencies and observed that increasing valencies resulted in a higher cellular uptake of WQP-NPs over the peptide alone. We also found that WQP-NPs showed higher uptake in PSMA over-expressing cells, attributed to a stronger avidity for selective PSMA targeting. This kind of strategy can be useful for improving the binding affinity of a weak ligand as a means for selective tumor targeting.
JTD Keywords: Cells, Delivery, Ligands, Membrane antigen, Psma
Pujals, S, Albertazzi, L, Fuentes, E, Gabaldon, Y, Collado, M, Dhiman, S, (2022). Supramolecular Stability of Benzene-1,3,5-tricarboxamide Supramolecular Polymers in Biological Media: Beyond the Stability-Responsiveness Trade-off Journal Of The American Chemical Society 144, 21196-21205
Supramolecular assemblies have been gaining attention in recent years in the field of drug delivery because of their unique formulation possibilities and adaptive behavior. Their non-covalent nature allows for their self-assembly formulation and responsiveness to stimuli, an appealing feature to trigger a therapeutic action with spatiotemporal control. However, facing in vivo conditions is very challenging for non-covalent structures. Dilution and proteins in blood can have a direct impact on self assembly, destabilizing the supramolecules and leading to a premature and uncontrolled cargo release. To rationalize this behavior, we designed three monomers exhibiting distinct hydrophobic cores that self-assemble into photo-responsive fibers. We estimated their stability-responsiveness tradeoff in vitro, finding two well-separated regimes. These are low-robustness regime, in which the system equilibrates quickly and responds readily to stimuli, and high-robustness regime, in which the system equilibrates slowly and is quite insensitive to stimuli. We probed the performance of both regimes in a complex environment using Fo''rster resonance energy transfer (FRET). Interestingly, the stability-responsiveness trade-off defines perfectly the extent of disassembly caused by dilution but not the one caused by protein interaction. This identifies a disconnection between intrinsic supramolecular robustness and supramolecular stability in the biological environment, strongly influenced by the disassembly pathway upon protein interaction. These findings shed light on the key features to address for supramolecular stability in the biological environment.
JTD Keywords: Azobenzene, Critical micellization, Fret, Guide, Nanoparticles, Ph, Photoisomerization, Polymerization, Shape, Water
Morla-Folch, J, Vargas-Nadal, G, Fuentes, E, Illa-Tuset, S, Koeber, M, Sissa, C, Pujals, S, Painelli, A, Veciana, J, Faraudo, J, Belfield, KD, Albertazzi, L, Ventosa, N, (2022). Ultrabright Foster Resonance Energy Transfer Nanovesicles: The Role of Dye Diffusion Chemistry Of Materials 34, 8517-8527
The development of contrast agents based on fluorescent nanoparticles with high brightness and stability is a key factor to improve the resolution and signal-to-noise ratio of current fluorescence imaging techniques. However, the design of bright fluorescent nanoparticles remains challenging due to fluorescence self-quenching at high concentrations. Developing bright nanoparticles showing FRET emission adds several advantages to the system, including an amplified Stokes shift, the possibility of ratiometric measurements, and of verifying the nanoparticle stability. Herein, we have developed Forster resonance energy transfer (FRET)-based nanovesicles at different dye loadings and investigated them through complementary experimental techniques, including conventional fluorescence spectroscopy and super-resolution microscopy supported by molecular dynamics calculations. We show that the optical properties can be modulated by dye loading at the nanoscopic level due to the dye's molecular diffusion in fluid-like membranes. This work shows the first proof of a FRET pair dye's dynamism in liquid-like membranes, resulting in optimized nanoprobes that are 120-fold brighter than QDot 605 and exhibit >80% FRET efficiency with vesicle-to-vesicle variations that are mostly below 10%.
JTD Keywords: Bright, Dendrimers, Fluorescent, In-vivo, Nanoparticles, Nir, Particles
Valles, M, Pujals, S, Albertazzi, L, Sánchez, S, (2022). Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors Acs Nano 16, 5615-5626
Enzyme-powered micro- and nanomotors make use of biocatalysis to self-propel in aqueous media and hold immense promise for active and targeted drug delivery. Most (if not all) of these micro- and nanomotors described to date are fabricated using a commercially available enzyme, despite claims that some commercial preparations may not have a sufficiently high degree of purity for downstream applications. In this study, the purity of a commercial urease, an enzyme frequently used to power the motion of micro- and nanomotors, was evaluated and found to be impure. After separating the hexameric urease from the protein impurities by size-exclusion chromatography, the hexameric urease was subsequently characterized and used to functionalize hollow silica microcapsules. Micromotors loaded with purified urease were found to be 2.5 times more motile than the same micromotors loaded with unpurified urease, reaching average speeds of 5.5 ?m/s. After comparing a number of parameters, such as enzyme distribution, protein loading, and motor reusability, between micromotors functionalized with purified vs unpurified urease, it was concluded that protein purification was essential for optimal performance of the enzyme-powered micromotor.
JTD Keywords: canavalin, catalysis, delivery, dls, enhanced diffusion, enzyme, lipase immobilization, micromotors, self-propulsion, super-resolution microscopy, urease, Mesoporous silica nanoparticles, Micromotors, Super-resolution microscopy
Murar, M, Albertazzi, L, Pujals, S, (2022). Advanced Optical Imaging-Guided Nanotheranostics toward Personalized Cancer Drug Delivery Nanomaterials 12, 399
Nanomedicine involves the use of nanotechnology for clinical applications and holds promise to improve treatments. Recent developments offer new hope for cancer detection, prevention and treatment; however, being a heterogenous disorder, cancer calls for a more targeted treatment approach. Personalized Medicine (PM) aims to revolutionize cancer therapy by matching the most effective treatment to individual patients. Nanotheranostics comprise a combination of therapy and diagnostic imaging incorporated in a nanosystem and are developed to fulfill the promise of PM by helping in the selection of treatments, the objective monitoring of response and the planning of follow-up therapy. Although well-established imaging techniques, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT), are primarily used in the development of theranostics, Optical Imaging (OI) offers some advantages, such as high sensitivity, spatial and temporal resolution and less invasiveness. Additionally, it allows for multiplexing, using multi-color imaging and DNA barcoding, which further aids in the development of personalized treatments. Recent advances have also given rise to techniques permitting better penetration, opening new doors for OI-guided nanotheranostics. In this review, we describe in detail these recent advances that may be used to design and develop efficient and specific nanotheranostics for personalized cancer drug delivery. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
JTD Keywords: 5-aminolevulinic acid, cancer, contrast agents, in-vivo, malignant gliomas, multifunctional nanoparticles, nanomedicine, optical imaging, ovarian-cancer, personalized medicine, quantum dots, silica nanoparticles, targeted probes, theranostics, Cancer, Nanomedicine, Optical imaging, Personalized medicine, Superparamagnetic iron-oxide, Theranostics
Arista-Romero, M, Delcanale, P, Pujals, S, Albertazzi, L, (2022). Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles Acs Photonics 9, 101-109
Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFluS). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.
JTD Keywords: dna-paint, hemagglutinin, influenza, neuraminidase, paint, recombinant proteins, single-molecule localization microscopy, single-particle analysis, virus-like particles, Dna-paint, Hemagglutinin, Influenza, Neuraminidase, Paint, Recombinant proteins, Single particle analysis, Single-molecule localization microscopy, Single-particle analysis, Super-resolution microscopy, Superresolution microscopy, Virus-like particles
Andrian, T, Pujals, S, Albertazzi, L, (2021). Quantifying the effect of PEG architecture on nanoparticle ligand availability using DNA-PAINT Nanoscale Advances 3, 6876-6881
The importance of PEG architecture on nanoparticle (NP) functionality is known but still difficult to investigate, especially at a single particle level. Here, we apply DNA Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT), a super-resolution microscopy (SRM) technique, to study the surface functionality in poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs with different PEG structures. We demonstrated how the length of the PEG spacer can influence the accessibility of surface chemical functionality, highlighting the importance of SRM techniques to support the rational design of functionalized NPs.
JTD Keywords: chain-length, density, plga, surface, systems, Chain-length, Density, Dna, Microscopy technique, Nanoparticles, Nanoscale topography, Paint, Peg spacers, Plga, Poly lactide-co-glycolide, Poly-lactide-co-glycolide, Polyethylene glycols, Polylactide-co-glycolide, Single-particle, Super-resolution microscopy, Superresolution microscopy, Surface, Surface chemicals, Surface functionalities, Systems
Riera, R, Hogervorst, TP, Doelman, W, Ni, Y, Pujals, S, Bolli, E, Codée, JDC, van Kasteren, SI, Albertazzi, L, (2021). Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT Nature Chemical Biology 17, 1281-1288
Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
JTD Keywords: dc-sign, density, dimerization, endocytosis, lateral mobility, ligand-binding, mannose receptor, proteins, recognition, Animal, Animals, Cell membrane, Cell membrane permeability, Chemistry, Cho cell line, Cho cells, Cricetulus, Cysteine-rich domain, Kinetics, Lectin, Lectins, Ligand, Ligands, Molecular library, Multivariate analysis, Polysaccharide, Polysaccharides, Procedures, Protein binding, Single molecule imaging, Small molecule libraries, Structure activity relation, Structure-activity relationship
Glinkowska Mares, Adrianna, Feiner-Gracia, Natalia, Muela, Yolanda, Martínez, Gema, Delgado, Lidia, Albertazzi, Lorenzo, Pujals, Silvia, (2021). Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy Applied Nano 2, 289-302
Organ-on-a-chip technology is a 3D cell culture breakthrough of the last decade. This rapidly developing field of bioengineering intertwined with microfluidics provides new insights into disease development and preclinical drug screening. So far, optical and fluorescence microscopy are the most widely used methods to monitor and extract information from these models. Meanwhile transmission electron microscopy (TEM), despite its wide use for the characterization of nanomaterials and biological samples, remains unexplored in this area. In our work we propose a TEM sample preparation method, that allows to process a microfluidic chip without its prior deconstruction, into TEM-compatible specimens. We demonstrated preparation of tumor blood vessel-on-a-chip model and consecutive steps to preserve the endothelial cells lining microfluidic channel, for the chip’s further transformation into ultrathin sections. This approach allowed us to obtain cross-sections of the microchannel with cells cultured inside, and to observe cell adaptation to the channel geometry, as well as the characteristic for endothelial cells tight junctions. The proposed sample preparation method facilitates the electron microscopy ultrastructural characterization of biological samples cultured in organ-on-a-chip device.
JTD
Casellas, NM, Albertazzi, L, Pujals, S, Torres, T, García-Iglesias, M, (2021). Unveiling Polymerization Mechanism in pH-regulated Supramolecular Fibers in Aqueous Media Chemistry-A European Journal 27, 11056-11060
An amine functionalized C3-symmetric benzotrithiophene (BTT) monomer has been designed and synthetized in order to form pH responsive one-dimensional supramolecular polymers in aqueous media. While most of the reported studies looked at the effect of pH on the size of the aggregates, herein, a detailed mechanistic study is reported, carried out upon modifying the pH to trigger the formation of positively charged ammonium groups. A dramatic and reversible change in the polymerization mechanism and size of the supramolecular fibers is observed and ascribed to the combination of Coulombic repulsive forces and higher monomer solubility. Furthermore, the induced frustrated growth of the fibers is further employed to finely control the one-dimensional supramolecular polymerisation and copolymerization processes.
JTD Keywords: dynamics, ph responsivity, polymerization mechanism, self-assembly, supramolecular chemistry, supramolecular polymers, Ph responsivity, Polymerization mechanism, Polymers, Self-assembly, Supramolecular chemistry, Supramolecular polymers
Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning Small Methods 5, 2100279
Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy. © 2021 The Authors. Small Methods published by Wiley-VCH GmbH
JTD Keywords: eukaryotic cells, label-free mapping, machine learning, nanoscale, scanning dielectric microscopy, Biochemical composition, Cells, Constant, Cytology, Data-driven approach, Dielectric forces, Dielectric materials, Eukaryotic cells, Label-free mapping, Machine learning, Mapping, Microscopy, atomic force, Nanoscale, Nanoscale composition, Nanoscale spatial resolution, Nanotechnology, Scanning, Scanning dielectric microscopy, Supervised neural networks
Andrian, T, Delcanale, P, Pujals, S, Albertazzi, L, (2021). Correlating Super-Resolution Microscopy and Transmission Electron Microscopy Reveals Multiparametric Heterogeneity in Nanoparticles Nano Letters 21, 5360-5368
The functionalization of nanoparticles with functional moieties is a key strategy to achieve cell targeting in nanomedicine. The interplay between size and ligand number is crucial for the formulation performance and needs to be properly characterized to understand nanoparticle structure-activity relations. However, there is a lack of methods able to measure both size and ligand number at the same time and at the single particle level. Here, we address this issue by introducing a correlative light and electron microscopy (CLEM) method combining super-resolution microscopy (SRM) and transmission electron microscopy (TEM) imaging. We apply our super-resCLEM method to characterize the relationship between size and ligand number and density in PLGA-PEG nanoparticles. We highlight how heterogeneity found in size can impact ligand distribution and how a significant part of the nanoparticle population goes completely undetected in the single-technique analysis. Super-resCLEM holds great promise for the multiparametric analysis of other parameters and nanomaterials.
JTD Keywords: cellular uptake, correlative light and electron microscopy (clem), density, electron microscopy (em), functionalization, heterogeneity, nanomedicine, nanoparticles, pegylation, plga, progress, quantification, size, Correlative light and electron microscopy (clem), Electron microscopy (em), Heterogeneity, Nanomedicine, Nanoparticles, Physicochemical characterization, Super-resolution microscopy (srm)
Mares, AG, Pacassoni, G, Marti, JS, Pujals, S, Albertazzi, L, (2021). Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology Plos One 16, e0251821
Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.
JTD Keywords: controlled-release, doxorubicin, encapsulation, functional nanoparticles, nanoprecipitation, pharmacokinetics, polymeric nanoparticles, shape, surface-chemistry, Breast neoplasms, Drug carriers, Drug delivery systems, Female, Humans, In-vitro, Mcf-7 cells, Microfluidics, Nanoparticles, Polyesters, Polyethylene glycol-poly(lactide-co-glycolide), Polyethylene glycols, Polymers
Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Dielectric imaging of fixed hela cells by in‐liquid scanning dielectric force volume microscopy Nanomaterials 11, 1402
Mapping the dielectric properties of cells with nanoscale spatial resolution can be an im-portant tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume mi-croscopy. Here, we demonstrate that such measurements can also be performed in the much more challenging case of fixed cells in liquid environment. Performing the measurements in liquid media contributes to preserve better the structure of the fixed cells, while also enabling accessing the local dielectric properties under fully hydrated conditions. The results shown in this work pave the way to address the nanoscale dielectric imaging of living cells, for which still further developments are required, as discussed here.
JTD Keywords: atomic force microscopy (afm), capacitance, constant, dielectric properties, electrostatic force microscopy (efm), functional microscopy, nanoscale, scanning dielectric microscopy (sdm), Atomic force microscopy (afm), Dielectric properties, Dielectrophoretic separation, Electrostatic force microscopy (efm), Functional micros-copy, Functional microscopy, Scanning dielectric microscopy (sdm), Scanning probe microscopy (spm)
Avalos-Padilla, Y, Georgiev, VN, Lantero, E, Pujals, S, Verhoef, R, Borgheti-Cardoso, LN, Albertazzi, L, Dimova, R, Fernàndez-Busquets, X, (2021). The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection Plos Pathogens 17, e1009455
Infection with Plasmodium falciparum enhances extracellular vesicle (EV) production in parasitized red blood cells (pRBCs), an important mechanism for parasite-to-parasite communication during the asexual intraerythrocytic life cycle. The endosomal sorting complex required for transport (ESCRT), and in particular the ESCRT-III sub-complex, participates in the formation of EVs in higher eukaryotes. However, RBCs have lost the majority of their organelles through the maturation process, including an important reduction in their vesicular network. Therefore, the mechanism of EV production in P. falciparum-infected RBCs remains to be elucidated. Here we demonstrate that P. falciparum possesses a functional ESCRT-III machinery activated by an alternative recruitment pathway involving the action of PfBro1 and PfVps32/PfVps60 proteins. Additionally, multivesicular body formation and membrane shedding, both reported mechanisms of EV production, were reconstituted in the membrane model of giant unilamellar vesicles using the purified recombinant proteins. Moreover, the presence of PfVps32, PfVps60 and PfBro1 in EVs purified from a pRBC culture was confirmed by super-resolution microscopy and dot blot assays. Finally, disruption of the PfVps60 gene led to a reduction in the number of the produced EVs in the KO strain and affected the distribution of other ESCRT-III components. Overall, our results increase the knowledge on the underlying molecular mechanisms during malaria pathogenesis and demonstrate that ESCRT-III P. falciparum proteins participate in EV production.
JTD
Arista-Romero, M, Pujals, S, Albertazzi, L, (2021). Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design Frontiers In Bioengineering And Biotechnology 9, 647874
In the last year the COVID19 pandemic clearly illustrated the potential threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to develop treatments. However, the small size of viruses, invisible under conventional fluorescence microscopy, make it difficult to study the organization of protein clusters within the viral particle. The applications of super-resolution microscopy have skyrocketed in the last years, converting this group into one of the leading techniques to characterize viruses and study the viral infection in cells, breaking the diffraction limit by achieving resolutions up to 10 nm using conventional probes such as fluorescent dyes and proteins. There are several super-resolution methods available and the selection of the right one it is crucial to study in detail all the steps involved in the viral infection, quantifying and creating models of infection for relevant viruses such as HIV-1, Influenza, herpesvirus or SARS-CoV-1. Here we review the use of super-resolution microscopy (SRM) to study all steps involved in the viral infection and antiviral design. In light of the threat of new viruses, these studies could inspire future assays to unveil the viral mechanism of emerging viruses and further develop successful antivirals against them.
JTD Keywords: antivirals, characterization, imaging, super-resolution, virus, Antivirals, Characterization, Imaging, Super-resolution, Virus
Andrian, T, Bakkum, T, van Elsland, DM, Bos, E, Koster, AJ, Albertazzi, L, van Kasteren, SI, Pujals, S, (2021). Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking Methods In Cell Biology 162, 303-331
© 2020 Elsevier Inc. Correlative light and electron microscopy (CLEM) entails a group of multimodal imaging techniques that are combined to pinpoint to the location of fluorescently labeled molecules in the context of their ultrastructural cellular environment. Here we describe a detailed workflow for STORM-CLEM, in which STochastic Optical Reconstruction Microscopy (STORM), an optical super-resolution technique, is correlated with transmission electron microscopy (TEM). This protocol has the advantage that both imaging modalities have resolution at the nanoscale, bringing higher synergies on the information obtained. The sample is prepared according to the Tokuyasu method followed by click-chemistry labeling and STORM imaging. Then, after heavy metal staining, electron microscopy imaging is performed followed by correlation of the two images. The case study presented here is on intracellular pathogens, but the protocol is versatile and could potentially be applied to many types of samples.
JTD Keywords: cells, click-chemistry, complex, correlative light and electron microscopy, cycloaddition, ligation, localization, proteins, resolution limit, single molecule localization microscopy, stochastic optical reconstruction microscopy (storm), storm, super-resolution microscopy, tokuyasu cryo-sectioning, tool, Click-chemistry, Correlative light and electron microscopy, Fluorescent-probes, Single molecule localization microscopy, Stochastic optical reconstruction microscopy (storm), Super-resolution microscopy, Tokuyasu cryo-sectioning, Transmission electron microscopy
Slor, G, Olea, AR, Pujals, S, Tigrine, A, De La Rosa, VR, Hoogenboom, R, Albertazzi, L, Amir, RJ, (2021). Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks Biomacromolecules 22, 1197-1210
© 2021 American Chemical Society. Enzymatically degradable polymeric micelles have great potential as drug delivery systems, allowing the selective release of their active cargo at the site of disease. Furthermore, enzymatic degradation of the polymeric nanocarriers facilitates clearance of the delivery system after it has completed its task. While extensive research is dedicated toward the design and study of the enzymatically degradable hydrophobic block, there is limited understanding on how the hydrophilic shell of the micelle can affect the properties of such enzymatically degradable micelles. In this work, we report a systematic head-To-head comparison of well-defined polymeric micelles with different polymeric shells and two types of enzymatically degradable hydrophobic cores. To carry out this direct comparison, we developed a highly modular approach for preparing clickable, spectrally active enzyme-responsive dendrons with adjustable degree of hydrophobicity. The dendrons were linked with three different widely used hydrophilic polymers-poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid) using the CuAAC click reaction. The high modularity and molecular precision of the synthetic methodology enabled us to easily prepare well-defined amphiphiles that differ either in their hydrophilic block composition or in their hydrophobic dendron. The micelles of the different amphiphiles were thoroughly characterized and their sizes, critical micelle concentrations, drug loading, stability, and cell internalization were compared. We found that the micelle diameter was almost solely dependent on the hydrophobicity of the dendritic hydrophobic block, whereas the enzymatic degradation rate was strongly dependent on the composition of both blocks. Drug encapsulation capacity was very sensitive to the type of the hydrophilic block, indicating that, in addition to the hydrophobic core, the micellar shell also has a significant role in drug encapsulation. Incubation of the spectrally active micelles in the presence of cells showed that the hydrophilic shell significantly affects the micellar stability, localization, cell internalization kinetics, and the cargo release mechanism. Overall, the high molecular precision and the ability of these amphiphiles to report their disassembly, even in complex biological media, allowed us to directly compare the different types of micelles, providing striking insights into how the composition of the micelle shells and cores can affect their properties and potential to serve as nanocarriers.
JTD
Feiner-Gracia, N, Mares, AG, Buzhor, M, Rodriguez-Trujillo, R, Marti, JS, Amir, RJ, Pujals, S, Albertazzi, L, (2021). Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip Acs Applied Bio Materials 4, 669-681
© 2020 American Chemical Society. The performance of supramolecular nanocarriers as drug delivery systems depends on their stability in the complex and dynamic biological media. After administration, nanocarriers are challenged by physiological barriers such as shear stress and proteins present in blood, endothelial wall, extracellular matrix, and eventually cancer cell membrane. While early disassembly will result in a premature drug release, extreme stability of the nanocarriers can lead to poor drug release and low efficiency. Therefore, comprehensive understanding of the stability and assembly state of supramolecular carriers in each stage of delivery is the key factor for the rational design of these systems. One of the main challenges is that current 2D in vitro models do not provide exhaustive information, as they fail to recapitulate the 3D tumor microenvironment. This deficiency in the 2D model complexity is the main reason for the differences observed in vivo when testing the performance of supramolecular nanocarriers. Herein, we present a real-time monitoring study of self-assembled micelles stability and extravasation, combining spectral confocal microscopy and a microfluidic cancer-on-a-chip. The combination of advanced imaging and a reliable 3D model allows tracking of micelle disassembly by following the spectral properties of the amphiphiles in space and time during the crucial steps of drug delivery. The spectrally active micelles were introduced under flow and their position and conformation continuously followed by spectral imaging during the crossing of barriers, revealing the interplay between carrier structure, micellar stability, and extravasation. Integrating the ability of the micelles to change their fluorescent properties when disassembled, spectral confocal imaging and 3D microfluidic tumor blood vessel-on-a-chip resulted in the establishment of a robust testing platform suitable for real-time imaging and evaluation of supramolecular drug delivery carrier's stability.
JTD Keywords: cancer-on-a-chip, complex, delivery, endothelial-cells, in-vitro, microfluidic, model, nanoparticle, penetration, shear-stress, stability, supramolecular, Cancer-on-a-chip, Cell-culture, Micelle, Microfluidic, Nanoparticle, Stability, Supramolecular
Andrian, T, Riera, R, Pujals, S, Albertazzi, L, (2021). Nanoscopy for endosomal escape quantification Nanoscale Advances 3, 10-23
© The Royal Society of Chemistry. The successful cytosolic delivery of nanoparticles is hampered by their endosomal entrapment and degradation. To push forward the smart development of nanoparticles we must reliably detect and quantify their endosomal escape process. However, the current methods employed are not quantitative enough at the nanoscale to achieve this. Nanoscopy is a rapidly evolving field that has developed a diverse set of powerful techniques in the last two decades, opening the door to explore nanomedicine with an unprecedented resolution and specificity. The understanding of key steps in the drug delivery process-such as endosomal escape-would benefit greatly from the implementation of the most recent advances in microscopy. In this review, we provide the latest insights into endosomal escape of nanoparticles obtained by nanoscopy, and we discuss the features that would allow these techniques to make a great impact in the field.
JTD
Delcanale, P., Porciani, D., Pujals, S., Jurkevich, A., Chetrusca, A., Tawiah, K. D., Burke, D. H., Albertazzi, L., (2020). Aptamers with tunable affinity enable single-molecule tracking and localization of membrane receptors on living cancer cells Angewandte Chemie - International Edition 59, (42), 18546-18555
Tumor cell-surface markers are usually overexpressed or mutated protein receptors for which spatiotemporal regulation differs between and within cancers. Single-molecule fluorescence imaging can profile individual markers in different cellular contexts with molecular precision. However, standard single-molecule imaging methods based on overexpressed genetically encoded tags or cumbersome probes can significantly alter the native state of receptors. We introduce a live-cell points accumulation for imaging in nanoscale topography (PAINT) method that exploits aptamers as minimally invasive affinity probes. Localization and tracking of individual receptors are based on stochastic and transient binding between aptamers and their targets. We demonstrated single-molecule imaging of a model tumor marker (EGFR) on a panel of living cancer cells. Affinity to EGFR was finely tuned by rational engineering of aptamer sequences to define receptor motion and/or native receptor density.
JTD Keywords: Aptamers, Cell-surface receptors, Live-cell imaging, PAINT, Single-molecule tracking
Fuentes, E., Gerth, M., Berrocal, J. A., Matera, C., Gorostiza, P., Voets, I. K., Pujals, S., Albertazzi, L., (2020). An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water Journal of the American Chemical Society 142, (22), 10069-10078
One of the most appealing features of supramolecular assemblies is their ability to respond to external stimuli due to their noncovalent nature. This provides the opportunity to gain control over their size, morphology, and chemical properties and is key toward some of their applications. However, the design of supramolecular systems able to respond to multiple stimuli in a controlled fashion is still challenging. Here we report the synthesis and characterization of a novel discotic molecule, which self-assembles in water into a single-component supramolecular polymer that responds to multiple independent stimuli. The building block of such an assembly is a C3-symmetric monomer, consisting of a benzene-1,3,5-tricarboxamide core conjugated to a series of natural and non-natural functional amino acids. This design allows the use of rapid and efficient solid-phase synthesis methods and the modular implementation of different functionalities. The discotic monomer incorporates a hydrophobic azobenzene moiety, an octaethylene glycol chain, and a C-terminal lysine. Each of these blocks was chosen for two reasons: to drive the self-assembly in water by a combination of H-bonding and hydrophobicity and to impart specific responsiveness. With a combination of microscopy and spectroscopy techniques, we demonstrate self-assembly in water and responsiveness to temperature, light, pH, and ionic strength. This work shows the potential to integrate independent mechanisms for controlling self-assembly in a single-component supramolecular polymer by the rational monomer design and paves the way toward the use of multiresponsive systems in water.
JTD
Fuentes, E., Bohá, Fuentes-Caparrós, A. M., Schweins, R., Draper, E. R., Adams, D. J., Pujals, S., Albertazzi, L., (2020). PAINT-ing fluorenylmethoxycarbonyl (Fmoc)-diphenylalanine hydrogels Chemistry - A European Journal 26, (44), 9869-9873
Self-assembly of fluorenylmethoxycarbonyl-protected diphenylalanine (FmocFF) in water is widely known to produce hydrogels. Typically, confocal microscopy is used to visualize such hydrogels under wet conditions, that is, without freezing or drying. However, key aspects of hydrogels like fiber diameter, network morphology and mesh size are sub-diffraction limited features and cannot be visualized effectively using this approach. In this work, we show that it is possible to image FmocFF hydrogels by Points Accumulation for Imaging in Nanoscale Topography (PAINT) in native conditions and without direct gel labelling. We demonstrate that the fiber network can be visualized with improved resolution (≈50 nm) both in 2D and 3D. Quantitative information is extracted such as mesh size and fiber diameter. This method can complement the existing characterization tools for hydrogels and provide useful information supporting the design of new materials.
JTD Keywords: FmocFF, Hydrogels, Mesh size, PAINT, Super-resolution
Uroz, Marina, Garcia-Puig, Anna, Tekeli, Isil, Elosegui-Artola, Alberto, Abenza, Juan F., Marín-Llauradó, Ariadna, Pujals, Silvia, Conte, Vito, Albertazzi, Lorenzo, Roca-Cusachs, Pere, Raya, Ángel, Trepat, Xavier, (2019). Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium Nature Materials 18, 1015-1023
Epithelial repair and regeneration are driven by collective cell migration and division. Both cellular functions involve tightly controlled mechanical events, but how physical forces regulate cell division in migrating epithelia is largely unknown. Here we show that cells dividing in the migrating zebrafish epicardium exert large cell–extracellular matrix (ECM) forces during cytokinesis. These forces point towards the division axis and are exerted through focal adhesions that connect the cytokinetic ring to the underlying ECM. When subjected to high loading rates, these cytokinetic focal adhesions prevent closure of the contractile ring, leading to multi-nucleation through cytokinetic failure. By combining a clutch model with experiments on substrates of different rigidity, ECM composition and ligand density, we show that failed cytokinesis is triggered by adhesion reinforcement downstream of increased myosin density. The mechanical interaction between the cytokinetic ring and the ECM thus provides a mechanism for the regulation of cell division and polyploidy that may have implications in regeneration and cancer.
JTD
Pujals, S., Feiner-Gracia, N., Delcanale, P., Voets, I., Albertazzi, L., (2019). Super-resolution microscopy as a powerful tool to study complex synthetic materials Nature Reviews Chemistry 3, (2), 68-84
Understanding the relations between the formation, structure, dynamics and functionality of complex synthetic materials is one of the great challenges in chemistry and nanotechnology and represents the foundation for the rational design of novel materials for a variety of applications. Initially conceived to study biology below the diffraction limit, super-resolution microscopy (SRM) is emerging as a powerful tool for studying synthetic materials owing to its nanometric resolution, multicolour ability and minimal invasiveness. In this Review, we provide an overview of the pioneering studies that use SRM to visualize materials, highlighting exciting recent developments such as experiments in operando, wherein materials, such as biomaterials in a biological environment, are imaged in action. Moreover, the potential and the challenges of the different SRM methods for application in nanotechnology and (bio)materials science are discussed, aiming to guide researchers to select the best SRM approach for their specific purpose.
JTD Keywords: Bioinspired materials, Imaging techniques
Pujals, S., Albertazzi, L., (2019). Super-resolution microscopy for nanomedicine research ACS Nano 13, (9), 9707-9712
Super-resolution microscopy, or nanoscopy, revolutionized the field of cell biology, enabling researchers to visualize cellular structures with nanometric resolution, single-molecule sensitivity, and in multiple colors. However, the impact of these techniques goes beyond biology as the fields of nanotechnology and nanomedicine can greatly benefit from them, as well. Nanoscopy can visualize nanostructures in vitro and in cells and can contribute to the characterization of their structures and nano-bio interactions. In this Perspective, we discuss the potential of super-resolution imaging for nanomedicine research, its technical challenges, and the future developments we envision for this technology.
JTD
Kolpe, A., Arista-Romero, M., Schepens, B., Pujals, S., Saelens, X., Albertazzi, L., (2019). Super-resolution microscopy reveals significant impact of M2e-specific monoclonal antibodies on influenza A virus filament formation at the host cell surface Scientific Reports 9, (1), 4450
Influenza A virions are highly pleomorphic, exhibiting either spherical or filamentous morphology. The influenza A virus strain A/Udorn/72 (H3N2) produces copious amounts of long filaments on the surface of infected cells where matrix protein 1 (M1) and 2 (M2) play a key role in virus filament formation. Previously, it was shown that an anti-M2 ectodomain (M2e) antibody could inhibit A/Udorn/72 virus filament formation. However, the study of these structures is limited by their small size and complex structure. Here, we show that M2e-specific IgG1 and IgG2a mouse monoclonal antibodies can reduce influenza A/Udorn/72 virus plaque growth and infectivity in vitro. Using Immuno-staining combined with super-resolution microscopy that allows us to study structures beyond the diffraction limit, we report that M2 is localized at the base of viral filaments that emerge from the membrane of infected cells. Filament formation was inhibited by treatment of A/Udorn/72 infected cells with M2e-specific IgG2a and IgG1 monoclonal antibodies and resulted in fragmentation of pre-existing filaments. We conclude that M2e-specific IgGs can reduce filamentous influenza A virus replication in vitro and suggest that in vitro inhibition of A/Udorn/72 virus replication by M2e-specific antibodies correlates with the inhibition of filament formation on the surface of infected cells.
JTD
Liu, Yiliu, Pujals, Sílvia, Stals, Patrick J. M., Paulöhrl, Thomas, Presolski, Stanislav I., Meijer, E. W., Albertazzi, Lorenzo, Palmans, Anja R. A., (2018). Catalytically active single-chain polymeric nanoparticles: Exploring their functions in complex biological media Journal of the American Chemical Society 140, (9), 3423-3433
Dynamic single-chain polymeric nanoparticles (SCPNs) are intriguing, bioinspired architectures that result from the collapse or folding of an individual polymer chain into a nanometer-sized particle. Here we present a detailed biophysical study on the behavior of dynamic SCPNs in living cells and an evaluation of their catalytic functionality in such a complex medium. We first developed a number of delivery strategies that allowed the selective localization of SCPNs in different cellular compartments. Live/dead tests showed that the SCPNs were not toxic to cells while spectral imaging revealed that SCPNs provide a structural shielding and reduced the influence from the outer biological media. The ability of SCPNs to act as catalysts in biological media was first assessed by investigating their potential for reactive oxygen species generation. With porphyrins covalently attached to the SCPNs, singlet oxygen was generated upon irradiation with light, inducing spatially controlled cell death. In addition, Cu(I)- and Pd(II)-based SCPNs were prepared and these catalysts were screened in vitro and studied in cellular environments for the carbamate cleavage reaction of rhodamine-based substrates. This is a model reaction for the uncaging of bioactive compounds such as cytotoxic drugs for catalysis-based cancer therapy. We observed that the rate of the deprotection depends on both the organometallic catalysts and the nature of the protective group. The rate reduces from in vitro to the biological environment, indicating a strong influence of biomolecules on catalyst performance. The Cu(I)-based SCPNs in combination with the dimethylpropargyloxycarbonyl protective group showed the best performances both in vitro and in biological environment, making this group promising in biomedical applications.
JTD
Delcanale, Pietro, Miret-Ontiveros, Bernat, Arista-Romero, Maria, Pujals, Silvia, Albertazzi, Lorenzo, (2018). Nanoscale mapping functional sites on nanoparticles by Points Accumulation for Imaging in Nanoscale Topography (PAINT) ACS Nano 12, (8), 7629-7637
The ability of nanoparticles to selectively recognize a molecular target constitutes the key toward nanomedicine applications such as drug delivery and diagnostics. The activity of such devices is mediated by the presence of multiple copies of functional molecules on the nanostructure surface. Therefore, understanding the number and the distribution of nanoparticle functional groups is of utmost importance for the rational design of effective materials. Analytical methods are available, but to obtain quantitative information at the level of single particles and single functional sites, i.e., going beyond the ensemble, remains highly challenging. Here we introduce the use of an optical nanoscopy technique, DNA points accumulation for imaging in nanoscale topography (DNA-PAINT), to address this issue. Combining subdiffraction spatial resolution with molecular selectivity and sensitivity, DNA-PAINT provides both geometrical and functional information at the level of a single nanostructure. We show how DNA-PAINT can be used to image and quantify relevant functional proteins such as antibodies and streptavidin on nanoparticles and microparticles with nanometric accuracy in 3D and multiple colors. The generality and the applicability of our method without the need for fluorescent labeling hold great promise for the robust quantitative nanocharacterization of functional nanomaterials.
JTD
Casellas, Nicolas M., Pujals, Sílvia, Bochicchio, Davide, Pavan, Giovanni M., Torres, Tomás, Albertazzi, Lorenzo, García-Iglesias, Miguel, (2018). From isodesmic to highly cooperative: Reverting the supramolecular polymerization mechanism in water by fine monomer design Chemical Communications 54, (33), 4112-4115
Two structurally-similar discotic molecules able to self-assemble in water, forming supramolecular fibers, are reported. While both self-assembled polymers are indistinguishable from a morphological point-of-view, a dramatic change in their polymerization mechanism is observed (i.e., one self-assemble via an isodesmic mechanism, while the other shows one of the highest cooperativity values).
JTD
van Elsland, Daphne M., Pujals, Sílvia, Bakkum, Thomas, Bos, Erik, Oikonomeas-Koppasis, Nikolaos, Berlin, Ilana, Neefjes, Jacques, Meijer, Annemarie H., Koster, Abraham J., Albertazzi, Lorenzo, van Kasteren, Sander I., (2018). Ultrastructural imaging of salmonella-host interactions using super-resolution correlative light-electron microscopy of bioorthogonal pathogens ChemBioChem 19, (16), 1766-1770
The imaging of intracellular pathogens inside host cells is complicated by the low resolution and sensitivity of fluorescence microscopy and by the lack of ultrastructural information to visualize the pathogens. Herein, we present a new method to visualize these pathogens during infection that circumvents these problems: by using a metabolic hijacking approach to bioorthogonally label the intracellular pathogen Salmonella Typhimurium and by using these bioorthogonal groups to introduce fluorophores compatible with stochastic optical reconstruction microscopy (STORM) and placing this in a correlative light electron microscopy (CLEM) workflow, the pathogen can be imaged within its host cell context Typhimurium with a resolution of 20 nm. This STORM-CLEM approach thus presents a new approach to understand these pathogens during infection.
JTD
Feiner-Gracia, Natalia, Buzhor, Marina, Fuentes, Edgar, Pujals, S., Amir, Roey J., Albertazzi, Lorenzo, (2017). Micellar stability in biological media dictates internalization in living cells Journal of the American Chemical Society 139, (46), 16677-16687
The dynamic nature of polymeric assemblies makes their stability in biological media a crucial parameter for their potential use as drug delivery systems in vivo. Therefore, it is essential to study and understand the behavior of self-assembled nanocarriers under conditions that will be encountered in vivo such as extreme dilutions and interactions with blood proteins and cells. Herein, using a combination of fluorescence spectroscopy and microscopy, we studied four amphiphilic PEG–dendron hybrids and their self-assembled micelles in order to determine their structure–stability relations. The high molecular precision of the dendritic block enabled us to systematically tune the hydrophobicity and stability of the assembled micelles. Using micelles that change their fluorescent properties upon disassembly, we observed that serum proteins bind to and interact with the polymeric amphiphiles in both their assembled and monomeric states. These interactions strongly affected the stability and enzymatic degradation of the micelles. Finally, using spectrally resolved confocal imaging, we determined the relations between the stability of the polymeric assemblies in biological media and their cell entry. Our results highlight the important interplay between molecular structure, micellar stability, and cell internalization pathways, pinpointing the high sensitivity of stability–activity relations to minor structural changes and the crucial role that these relations play in designing effective polymeric nanostructures for biomedical applications.
JTD
Feiner-Gracia, Natalia, Beck, Michaela, Pujals, Sílvia, Tosi, Sébastien, Mandal, Tamoghna, Buske, Christian, Linden, Mika, Albertazzi, Lorenzo, (2017). Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona Small 13, (41), 1701631
The adsorption of serum proteins, leading to the formation of a biomolecular corona, is a key determinant of the biological identity of nanoparticles in vivo. Therefore, gaining knowledge on the formation, composition, and temporal evolution of the corona is of utmost importance for the development of nanoparticle-based therapies. Here, it is shown that the use of super-resolution optical microscopy enables the imaging of the protein corona on mesoporous silica nanoparticles with single protein sensitivity. Particle-by-particle quantification reveals a significant heterogeneity in protein absorption under native conditions. Moreover, the diversity of the corona evolves over time depending on the surface chemistry and degradability of the particles. This paper investigates the consequences of protein adsorption for specific cell targeting by antibody-functionalized nanoparticles providing a detailed understanding of corona-activity relations. The methodology is widely applicable to a variety of nanostructures and complements the existing ensemble approaches for protein corona study.
JTD Keywords: Heterogeneity, Mesoporous silica nanoparticles, Protein corona, Super-resolution imaging, Targeting
Pujals, S., Tao, K., Terradellas, A., Gazit, E., Albertazzi, L., (2017). Studying structure and dynamics of self-Assembled peptide nanostructures using fluorescence and super resolution microscopy Chemical Communications 53, (53), 7294-7297
Understanding the formation and properties of self-Assembled peptide nanostructures is the basis for the design of new architectures for various applications. Here we show the potential of fluorescence and super resolution imaging to unveil the structural and dynamic features of peptide nanofibers with high spatiotemporal resolution.
JTD