DONATE

Biosensors for bioengineering

About

The Biosensors for bioengineering group is a junior group under IBEC’s Tenure Track scheme.

Our research is focused on multi tissues organs-on-a-chip (OOC) and more specifically in the metabolic crosstalk within tissues and their relationship with metabolic diseases. Our projects are focused on four key tissues regulating glucose homeostasis, namely, the pancreas, liver, skeletal muscle, and adipose tissue. To achieve this objective, it is necessary a combined interdisciplinary approach.

Biomaterials and tissue engineering research

1) We have several lines of research related with skeletal muscle. Our first approach was with C2C12 mice cell line. We evaluated the influence of mechanical stiffness and geometrical confinement on the 3D culture of myoblast-laden chemically modified gelatin photo-cross linkable composite hydrogels in terms of in vitro myogenesis.

2) Encapsulation of beta-cells like from human skin fibroblast (collaboration with IDIBAPS). This work addresses two critical issues in the design of an efficient beta-cell replacement therapy: an accessible cell source for generation of substitute beta-cells and an adequate delivery device for transplantation. On one hand, we propose to generate transplantable functional insulin-producing beta-cells from fibroblasts through direct reprogramming strategies that bypass the pluripotent iPS stage. On a second objective, we are working in a new system of encapsulating beta-cells like in two steps, microencapsulation to protect cells from immune system and microencapsulation to mechanically protect them and manipulate them.

3) We are developing three-dimensional micro liver models using various biomaterials to recreate the in vivo-like mechanical properties and using hepatocytes and stellate cells. We are collaborating with Grifols company to test some drugs in our model.

4) We have a collaboration project with NovoNordisk to work in new approaches to encapsulate retinal cells.

Biosensing technology:

1) Integrating biosensors in an organ-on-a-chip. We are studying with in situ electrochemical biosensors the release of insulin under the effect of external stimuli, changes in glucose levels and myokines secreted by skeletal muscle (multi-OOC approach).

2) Related with this project we are implementing new biosensors systems. To fully exploit the potential of the organs-on-a-chip, there is a need to interface them to integrated sensing modules, capable to monitor in real-time their biochemical response to external stimuli, like stress or drugs.  The goal of this project is to answer this need, by developing a novel technology based on integrating localized surface plasmon resonance (LSPR) sensing module to organs-on-a-chip devices to monitor disease and evaluate drug response in organs-on-a-chip models.

3) Myotonic dystrophy type 1 (DM1) (collaboration with Hospital de la Fe and INCLIVA, Valencia, Spain). We have developed human skeletal muscle micro physiological tissues using micro molding technology and we have integrated them with amperometric biosensors to study the inflammatory process related with electrical and chemical stimuli. We have used transdifferentiated skin fibroblast human cells from DM1 patients and healthy human. Using this platform, we have started to evaluate different treatments, to screen drugs and to evaluate doses.

4) NMR integrated with OOC. The objective of this project is to develop a new technology based on magnetic resonance spectroscopy and imaging using dynamic nuclear polarisation (DNP-MR) integrated with OOC devices to monitor disease and evaluate drug response in OOC models. As a proof-of-concept, this project will fabricate a biomimetic multi OOC integrated device composed of liver spheroids and pancreatic islets and develop the necessary DNP-MR hardware and software to study metabolic diseases and for future drug screening applications. We are working in collaboration with Oxford instrument and Multiwave companies. 

Staff

Projects

NATIONAL PROJECTSFINANCERPI
Development of a “Muscle-on-a-Chip” (MoC) platform for the preclinical evaluation of potential therapies for Duchenne muscular dystrophy (2020-2022)DUCHENNE ESPAÑA, IV Convocatoria Ayudas a Proyectos de InvestigaciónJuanma Fernandez
BLAD · BioLiver Assist Device (2020-2021)AGAUR, Ajuts per a projectes innovadors amb potencial d’incorporació al sector productiu – LLAVORJavier Ramón
INNOTEC- Javier Ramon- Naturfiltr (2021-2023)TECNIOJavier Ramón
ASITOC Atomic-Sensor-Integrated Tissue-On-a-Chip: optically detected biomagnetism to understand muscular diseases (2021-2022)BIST_Barcelona Institute of Science and TechnologyJuanma Fernandez
INTERNATIONAL PROJECTSFINANCERPI
DAMOC · ‘Diabetes Approach by Multi-Organ-on-a-Chip’ (2017-2022)ERCJavier Ramón
BLOC · Benchtop NMR for Lab-on-Chip (2020-2022)European Comission FET-OpenJavier Ramón
PRIVATELY FUNDED PROJECTSFINANCERPI
Tatami · Therapeutic targeting of MBNL microRNAs as innovative treatments for myotonic dystrophy (2019-2022)Fundació bancaria “La Caixa”Javier Ramón
FINISHED PROJECTSFINANCERPI
Programa Faster Future 2020: COVID-19 (2021)FundraisingJavier Ramón
INDUCT · Fabrication of a biomimetic in vitro model of the intestinal tube muscle wall: smooth muscle-on-a-chip (2018-2020)MINECOJavier Ramón

Publications



(See full publication list in ORCID)
[br]

Equipment


Micro and nanofabrication techniques:

  • 3D microstructures on hydrogel materials
  • Mini-bioreactor for 3D cell culture
  • Microelectrodes fabrication
  • Synthesis and chemical modification of polymers and surfaces
  • Dielectrophoretic cells and micro particles manipulation

Characterization techniques:

  • Optical Microscopes (white light/epifluorescence)
  • Electrochemical techniques (Potentiometric/Amperometric/Impedance spectroscopy)
  • Immunosensing techniques (Fluorescence ELISA/Colorimetric ELISA/magneto ELISA)

Equipment:

  • Microfluidic systems (High precision syringe pumps/Peristaltic pumps/Micro valves)
  • Biological safety cabinet (class II)
  • Epifluorescence microscope for live-cell imaging
  • Pulsar – a high-resolution, 60MHz benchtop NMR spectrometer from Oxford Instruments

Access to the Nanotechnology Platform (IBEC Core Facilities): equipment for hot embossing lithography, polymer processing and photolithography, chemical wet etching, e-beam evaporation and surface characterization (TOF-SIMS)
Access to the Scientific and Technological Centers (University of Barcelona): equipment for surface analysis (XPS, AFM, XRD), organic structures characterization (NMR) and microscopy techniques (SEM, TEM, confocal)

Collaborations

  • Prof. Josep Samitier
    IBEC
  • Dr. Elena Martinez
    IBEC
  • Dr. Anna Novials
    Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS)
  • Dr. Ramon Gomís
    Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS)
  • Dr. Eduard Montanya
    The Bellvitge Biomedical Research Institute (IDIBELL)
  • Prof. Enric Bertran
    Physics and Engineering of Amorphous Materials and Nanostructures (FEMAN), Department of Applied Physics, University of Barcelona
  • Dr. Montserrat Costa
    2020, Director Plasma Proteins Research, Bioscience Industrial Group, Grifols, Barcelona Spain
    Collaborative project 
  • Tryfon Antonakakis
    2019, Co-Founder & CEO Multiwave Technologies AG 3 Chemin du
    Pré Fleuri 1228, Geneva Switzerland
    FET-open project 
  • Robert Hardy
    2019,  Project Manager Oxford Instruments plc Abingdon, Oxfordshire, EnglandFET-open project 
  • Dr. Carlos Villaescusa
    2018, Principal Scientist/Specialist, Project Leader, Department of Stem Cell Discovery, Novo Nordisk Denmark
    Collaborative project 

Clinical collaborations

  • Project “TATAMI” funded by Fundación Bancaria “La Caixa” – CaixaHealth program. In this project, we are developing a platform to perform drug screening analysis in human engineered microtissues in close collaboration with Professor Ruben Artero from Instituto de Investigaciones Clínicas de Valencia (INCLIVA) and medical doctor Vilchez from Hospital de la Fe (Valencia) 
  • We are also collaborating with Hospital de Sant Pau (Barcelona), with the group of senior professor Isabel Illa Sendra we are developing human microtissues to study the myasthenia gravis neuromuscular rare disease. 
  • In a Smart Specialization Project (RIS3CAT, ADVANCECAT project), I am working with senior professor Eduard Montanya from Hospital de Bellvitge (Barcelona) to develop transplantable patches of human pancreatic islets. 
  • Finally, we are collaborating with Doctor Jesus Castro from Hospital de la Vall de Hebron (Barcelona) to study chronic fatigue. 

News

The Institute for Bioengineering of Catalonia and the Sant Joan de Déu Barcelona Children’s Hospital have held a joint conference to strengthen collaboration in bioengineering and translational medicine. The event, held this morning at the IBEC, highlighted innovative projects, presented a joint PhD programme and encouraged the exchange of ideas between researchers from both institutions.

IBEC and SJD Barcelona Children’s Hospital strengthen their collaboration with a day of translational innovation

The Institute for Bioengineering of Catalonia and the Sant Joan de Déu Barcelona Children’s Hospital have held a joint conference to strengthen collaboration in bioengineering and translational medicine. The event, held this morning at the IBEC, highlighted innovative projects, presented a joint PhD programme and encouraged the exchange of ideas between researchers from both institutions.

IBEC and the Blood and Tissue Bank of Catalonia (BST) held a day to explore new collaborations in bioengineering and translational medicine. The meeting, held yesterday at IBEC, highlighted innovative projects, presented a joint PhD programme and strengthened the link between biomedical research and clinical applications.

IBEC and BST strengthen ties with Translational Collaboration Day

IBEC and the Blood and Tissue Bank of Catalonia (BST) held a day to explore new collaborations in bioengineering and translational medicine. The meeting, held yesterday at IBEC, highlighted innovative projects, presented a joint PhD programme and strengthened the link between biomedical research and clinical applications.

IBEC is one of the partners in the ambitious European project UNLOOC, a public-private collaboration involving 51 organisations from 10 countries with a budget of €68 million. The consortium aims to develop Organ-on-Chips technologies to reduce the use of animals in drug development and testing, and to improve the accuracy and personalisation of medical treatments.

Organ-on-Chips to reduce animal testing

IBEC is one of the partners in the ambitious European project UNLOOC, a public-private collaboration involving 51 organisations from 10 countries with a budget of €68 million. The consortium aims to develop Organ-on-Chips technologies to reduce the use of animals in drug development and testing, and to improve the accuracy and personalisation of medical treatments.

The second IBEC-WCH Precision Medicine Conference took place last week in Chengdu, China. This is a partnership between the Institute for Bioengineering of Catalonia (IBEC) and the West China Hospital (WCH) of Sichuan University, which aims to strengthen scientific collaboration between the two countries.

IBEC and West China Hospital strengthen collaboration in precision medicine

The second IBEC-WCH Precision Medicine Conference took place last week in Chengdu, China. This is a partnership between the Institute for Bioengineering of Catalonia (IBEC) and the West China Hospital (WCH) of Sichuan University, which aims to strengthen scientific collaboration between the two countries.

IBEC will coordinate SPM4.0 and participate as a partner in ENTRY-DM, two of the projects selected in the 2023 call for PhD networks within the Marie Skłodowska-Curie Actions (MSCA). Thanks to these two projects, IBEC will add three new PhD students to its staff.

Two projects with IBEC participation selected in the MSCA call for PhD networks

IBEC will coordinate SPM4.0 and participate as a partner in ENTRY-DM, two of the projects selected in the 2023 call for PhD networks within the Marie Skłodowska-Curie Actions (MSCA). Thanks to these two projects, IBEC will add three new PhD students to its staff.

BuonMarrow, OMICSENS, and PHOENIX-OoC are the three projects in which IBEC’s Biosensors for Bioengineering Group will apply its extensive knowledge in the field of biosensors and organs-on-a-chip. The projects, which will be developed with funding from the European Innovation Council’s prestigious Pathfinder Open program, promise to enhance cancer treatments and foster innovation in diagnostics.

IBEC to Develop Organs-on-a-Chip in Three Pathfinder Projects

BuonMarrow, OMICSENS, and PHOENIX-OoC are the three projects in which IBEC’s Biosensors for Bioengineering Group will apply its extensive knowledge in the field of biosensors and organs-on-a-chip. The projects, which will be developed with funding from the European Innovation Council’s prestigious Pathfinder Open program, promise to enhance cancer treatments and foster innovation in diagnostics.

Developed by the IBEC, this system is created using patient cells and represents the first 3D muscle model capable of replicating the damage caused by Duchenne muscular dystrophy. The next phase of this project involves the development of an organ-on-a-chip platform, enabling more efficient preclinical studies of potential drugs and enhanced monitoring of muscle damage. Funding for this research has been provided by Duchenne Parent Project Spain, a non-profit association led by families with children affected by this form of dystrophy.

An artificial muscle to study Duchenne muscular dystrophy

Developed by the IBEC, this system is created using patient cells and represents the first 3D muscle model capable of replicating the damage caused by Duchenne muscular dystrophy. The next phase of this project involves the development of an organ-on-a-chip platform, enabling more efficient preclinical studies of potential drugs and enhanced monitoring of muscle damage. Funding for this research has been provided by Duchenne Parent Project Spain, a non-profit association led by families with children affected by this form of dystrophy.

IBEC researcher Javier Ramón Azcón has been awarded an “ERC Proof of Concept Grant.” This prestigious funding is granted by the European Research Council to explore the commercial and societal potential of research projects conducted in European institutions. Ramón’s project, Uniink, is centered on the treatment of Type 1 diabetes using cell therapy and 3D bioprinting.

European funding for the treatment of Type 1 diabetes using 3D bioprinting

IBEC researcher Javier Ramón Azcón has been awarded an “ERC Proof of Concept Grant.” This prestigious funding is granted by the European Research Council to explore the commercial and societal potential of research projects conducted in European institutions. Ramón’s project, Uniink, is centered on the treatment of Type 1 diabetes using cell therapy and 3D bioprinting.

Dr. James Eills, researcher at IBEC, has been selected to attend the prestigious Lindau Nobel Laureate Meeting that brings together outstanding young scientists from around the world with Nobel laureates. This year, the event will be dedicated to Physiology & Medicine and will be held from 25th-30th June in Lindau, Germany.

IBEC researcher James Eills to meet with Nobel laureates

Dr. James Eills, researcher at IBEC, has been selected to attend the prestigious Lindau Nobel Laureate Meeting that brings together outstanding young scientists from around the world with Nobel laureates. This year, the event will be dedicated to Physiology & Medicine and will be held from 25th-30th June in Lindau, Germany.

1 2 3

Jobs