Molecular Bionics


 

About

We are chemists, physicists, mathematicians, engineers, biologists who work alongside to design bionic units that mimic specific biological functions and/or introduce operations that do not exist in Nature. We apply a constructionist approach where we mimic biological complexity in the form of design principles to produce functional units from simple building blocks and their interactions.​ We called such an approach: Molecular Bionics.

 

We are engaged in several activities involving the synthesis and characterisation of novel hierarchal materials whose properties are the result of the holistic combination of its components:

Molecular engineering




We combine synthetic and supramolecular chemistry to tune inter/intramolecular interactions and self-assembly processes to form dynamic soft materials whose molecular, supramolecular and mesoscale structures are tuned and fit for the final application (pictured right: molecular engineering of nanoscopic structures starting from molecule passing to polymers and finally to supra molecular structures).

 

Physical biology

Figure 1 Giant polymersomes formed by 2D printing (Howse et al Nature Materials 2009)



Our materials are designed to interact with living systems and thus its biological activity is studied in high detail. We have developed and established new methodologies to study living systems and how synthetic materials interact with them combining holistically physical and life sciences (Physical Biology).

 

Synthetic biology

Figure 2; The brain vasculature (red) of a mouse surronded by astrocytes (cyan) and neurons (white) (Matias-Lorenço et al in preparation )


Both know-hows are applied to study biological organisation and complexity creating synthetic surrogates that act as models, as well as to engineer novel sophisticated ways to interact with living organisms.

 

Somanautics


In analogy to medical bionics, where engineering and physical science converge to the design of replacement and/or enhancement of malfunctioning body parts, we take inspiration from viruses, trafficking vesicles and exosomes to apply molecular engineering to create nanoscopic carriers that can navigate the human body (Somanautics) with the final aim to improve drug delivery or create new diagnostic tools.


Visit our external website to find out more.

 

Staff

Giuseppe Battaglia | Group Leader / ICREA Research Professor
Iris Cristina Da Luz Batalha | Senior Researcher
Daniel Gonzalez Carter | Senior Researcher
Mohit Kumar | Senior Researcher
Lorena Ruiz Pérez | Senior Researcher
Silvia Acosta Gutiérrez | Postdoctoral Researcher
Cátia Daniela Carvalho Ferreira Lopes | Postdoctoral Researcher
José Rui Pereira | Postdoctoral Researcher
Lara Aiassa | PhD Student
Bárbara Borges Fernandes | PhD Student
Joseph George Buckley | PhD Student
Víctor Mejías Pérez | PhD Student
José María Muñoz López | PhD Student
Gianmarco Tuveri | PhD Student
Akhil Venugopal | PhD Student
Claudia Di Guglielmo | Laboratory Technician
Matilde Ghibaudi | Laboratory Technician
Peter Pfeifer | Laboratory Technician
Marco Basile | Masters Student
Laura Beltrán Sánchez | Masters Student
Claudia Codano | Masters Student
Giulia Maria Porro | Masters Student
Alessandro Ronzoni | Masters Student
Floor Ummels | Masters Student

 

 

Projects

EU-Funded Projects
CheSSTag · Chemotactic Super-Selective Targeting of Gliomas (2020-2023) European Comission, ERC-CoG Giuseppe Battaglia
Fundraising Projects
Programa Faster Future 2020: COVID-19 (2021) Fundraising Giuseppe Battaglia

 

Publications

Bravo, J, Ribeiro, I, Terceiro, AF, Andrade, EB, Portugal, CC, Lopes, IM, Azevedo, MM, Sousa, M, Lopes, CDF, Lobo, AC, Canedo, T, Relvas, JB, Summavielle, T, (2022). Neuron-Microglia Contact-Dependent Mechanisms Attenuate Methamphetamine-Induced Microglia Reactivity and Enhance Neuronal Plasticity Cells 11, 355

Exposure to methamphetamine (Meth) has been classically associated with damage to neuronal terminals. However, it is now becoming clear that addiction may also result from the interplay between glial cells and neurons. Recently, we demonstrated that binge Meth administration promotes microgliosis and microglia pro-inflammation via astrocytic glutamate release in a TNF/IP(3)R2-Ca2+-dependent manner. Here, we investigated the contribution of neuronal cells to this process. As the crosstalk between microglia and neurons may occur by contact-dependent and/or contact-independent mechanisms, we developed co-cultures of primary neurons and microglia in microfluidic devices to investigate how their interaction affects Meth-induced microglia activation. Our results show that neurons exposed to Meth do not activate microglia in a cell-autonomous way but require astrocyte mediation. Importantly, we found that neurons can partially prevent Meth-induced microglia activation via astrocytes, which seems to be achieved by increasing arginase 1 expression and strengthening the CD200/CD200r pathway. We also observed an increase in synaptic individual area, as determined by co-localization of pre- and post-synaptic markers. The present study provides evidence that contact-dependent mechanisms between neurons and microglia can attenuate pro-inflammatory events such as Meth-induced microglia activation.


Jain, A, Calo, A, Barcelo, D, Kumar, M, (2022). Supramolecular systems chemistry through advanced analytical techniques Analytical And Bioanalytical Chemistry

Supramolecular chemistry is the quintessential backbone of all biological processes. It encompasses a wide range from the metabolic network to the self-assembled cytoskeletal network. Combining the chemical diversity with the plethora of functional depth that biological systems possess is a daunting task for synthetic chemists to emulate. The only route for approaching such a challenge lies in understanding the complex and dynamic systems through advanced analytical techniques. The supramolecular complexity that can be successfully generated and analyzed is directly dependent on the analytical treatment of the system parameters. In this review, we illustrate advanced analytical techniques that have been used to investigate various supramolecular systems including complex mixtures, dynamic self-assembly, and functional nanomaterials. The underlying theme of such an overview is not only the exceeding detail with which traditional experiments can be probed but also the fact that complex experiments can now be attempted owing to the analytical techniques that can resolve an ensemble in astounding detail. Furthermore, the review critically analyzes the current state of the art analytical techniques and suggests the direction of future development. Finally, we envision that integrating multiple analytical methods into a common platform will open completely new possibilities for developing functional chemical systems.

Keywords: Analytical technique, Analytical techniques, Biological process, Chemical analysis, Chemical diversity, Complex networks, Cytoskeletal network, Dynamic self-assembly, High-speed afm, Hydrogels, In-situ, Liquid cell tem, Metabolic network, Microscopy, Nanoscale, Proteins, Self assembly, Supramolecular chemistry, Supramolecular systems, System chemistry, Systems chemistry


Gouveia, Virgínia M., Rizzello, Loris, Vidal, Bruno, Nunes, Claudia, Poma, Alessandro, Lopez?Vasquez, Ciro, Scarpa, Edoardo, Brandner, Sebastian, Oliveira, António, Fonseca, João E., Reis, Salette, Battaglia, Giuseppe, (2022). Targeting Macrophages and Synoviocytes Intracellular Milieu to Augment Anti-Inflammatory Drug Potency Advanced Therapeutics 5, 2100167

Pepe, G, Sfogliarini, C, Rizzello, L, Battaglia, G, Pinna, C, Rovati, G, Ciana, P, Brunialti, E, Mornata, F, Maggi, A, Locati, M, Vegeto, E, (2021). ER alpha-independent NRF2-mediated immunoregulatory activity of tamoxifen Biomedicine & Pharmacotherapy 144, 112274

Sex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ER alpha)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages. Using primary cultures of female mouse macrophages, we analyzed the expression of immune mediators and activation of effector functions in competition experiments with SERMs and 17 beta-estradiol (E2) or the bacterial endotoxin LPS. We observed that 4HT and TAM induce estrogen antagonist effects when used at nanomolar concentrations, while pharmacological concentrations that are reached by TAM in clinical settings regulate the expression of VEGF alpha and other immune activation genes by ER alpha- and G protein-coupled receptor 1 (GPER1)-independent mechanisms that involve NRF2 through PI3K/Akt-dependent mechanisms. Importantly, we observed that SERMs potentiate cell phagocytosis and modify the effects of LPS on the expression of inflammatory cytokines, such as TNF alpha and IL1 beta, with an overall increase in cell inflammatory phenotype, further sustained by potentiation of IL1 beta secretion through caspase-1 activation.

Keywords: Apoptosis, Breast-cancer, Drug repurposing, Expression, Inflammation, Macrophage, Nrf2, Resistance, Sex-differences, Tamoxifen, Tumor-associated macrophages


Duro-Castano, Aroa, Rodríguez-Arco, Laura, Ruiz-Pérez, Lorena, De Pace, Cesare, Marchello, Gabriele, Noble-Jesus, Carlos, Battaglia, Giuseppe, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.

Keywords: Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle


Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV, (2021). Peptide-Based Supramolecular Systems Chemistry Chemical Reviews 121, 13869-13914

Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.


Noble Jesus C, Evans R, Forth J, Estarellas C, Gervasio FL, Battaglia G, (2021). Amphiphilic Histidine-Based Oligopeptides Exhibit pH-Reversible Fibril Formation Acs Macro Letters 10, 984-989

We report the design, simulation, synthesis, and reversible self-assembly of nanofibrils using polyhistidine-based oligopeptides. The inclusion of aromatic amino acids in the histidine block produces distinct antiparallel β-strands that lead to the formation of amyloid-like fibrils. The structures undergo self-assembly in response to a change in pH. This creates the potential to produce well-defined fibrils for biotechnological and biomedical applications that are pH-responsive in a physiologically relevant range.

Keywords: peptide, recognition, Amyloid fibrils


De Matteis V, Cascione M, Rizzello L, Manno DE, Di Guglielmo C, Rinaldi R, (2021). Synergistic effect induced by gold nanoparticles with polyphenols shell during thermal therapy: Macrophage inflammatory response and cancer cell death assessment Cancers 13,

Background: In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. Methods: Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. Results: Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. Conclusions: Au NP@polyphenols may be powerful agents in cancer treatment.

Keywords: antioxidant, aunps, biocompatibility, biology, calcium, cancer, green synthesis, inflammation response, inhibition, interleukin-6, mechanisms, natural polyphenols, physico-chemical properties, polyphenols, size, thermal treatment, Aunps, Cancer, Green synthesis, Inflammation response, Nobilis l. leaves, Physico-chemical properties, Polyphenols, Thermal treatment


Apriceno A, Silvestro I, Girelli A, Francolini I, Pietrelli L, Piozzi A, (2021). Preparation and characterization of chitosan-coated manganese-ferrite nanoparticles conjugated with laccase for environmental bioremediation Polymers 13,

Bioremediation with immobilized enzymes has several advantages, such as the enhancement of selectivity, activity, and stability of biocatalysts, as well as enzyme reusability. Laccase has proven to be a good candidate for the removal of a wide range of contaminants. In this study, naked or modified MnFe O magnetic nanoparticles (MNPs) were used as supports for the immobilization of laccase from Trametes versicolor. To increase enzyme loading and stability, MNPs were coated with chitosan both after the MNP synthesis (MNPs-CS) and during their formation (MNPs-CS ). SEM analysis showed different sizes for the two coated systems, 20 nm and 10 nm for MNPs-CS and MNPs-CS , respectively. After covalent immobilization of laccase by glutaraldehyde, the MNPs-CS -lac and MNPs-CS-lac systems showed a good resistance to temperature denaturation and storage stability. The most promising system for use in repeated batches was MNPs-CS -lac, which degraded about 80% of diclofenac compared to 70% of the free enzyme. The obtained results demonstrated that the MnFe O -CS system could be an excellent candidate for the removal of contaminants. 2 4 in situ in situ in situ in situ 2 4 in situ

Keywords: bioremediation, chitosan, diclofenac, diclofenac removal, immobilized enzyme, laccase, magnetic nanoparticles, phase, removal, supports, Bioremediation, Chitosan, Diclofenac removal, Enzyme immobilization, Immobilized enzyme, Laccase, Magnetic nanoparticles


Liu, M., Apriceno, A., Sipin, M., Scarpa, E., Rodriguez-Arco, L., Poma, A., Marchello, G., Battaglia, G., Angioletti-Uberti, S., (2020). Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions Nature Communications 11, (1), 4836

From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs.


Sola-Barrado, B., M. Leite, D., Scarpa, E., Duro-Castano, A., Battaglia, G., (2020). Combinatorial intracellular delivery screening of anticancer drugs Molecular Pharmaceutics 17, (12), 4709-4714

Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.

Keywords: Combination therapy, Drug screening, Drug solubilization, Intracellular drug delivery, Polymeric nanoparticles, Synergy analysis


Tian, X., De Pace, C., Ruiz-Perez, L., Chen, B., Su, R., Zhang, M., Zhang, R., Zhang, Q., Wang, Q., Zhou, H., Wu, J., Zhang, Z., Tian, Y., Battaglia, G., (2020). A Cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy Advanced Materials 32, (39), 2003901

The visualization of microtubules by combining optical and electron microscopy techniques provides valuable information to understand correlated intracellular activities. However, the lack of appropriate probes to bridge both microscopic resolutions restricts the areas and structures that can be comprehended within such highly assembled structures. Here, a versatile cyclometalated iridium (III) complex is designed that achieves synchronous fluorescence–electron microscopy correlation. The selective insertion of the probe into a microtubule triggers remarkable fluorescence enhancement and promising electron contrast. The long-life, highly photostable probe allows live-cell super-resolution imaging of tubulin localization and motion with a resolution of ≈30 nm. Furthermore, correlative light–electron microscopy and energy-filtered transmission electron microscopy reveal the well-associated optical and electron signal at a high specificity, with an interspace of ≈41 Å of microtubule monomer in cells.

Keywords: Correlation light–electron microscopy, Microtubules, Organometallic probes, Super-resolution microscopy


Duro-Castano, A., Moreira Leite, D., Forth, J., Deng, Y., Matias, D., Noble Jesus, C., Battaglia, G., (2020). Designing peptide nanoparticles for efficient brain delivery Advanced Drug Delivery Reviews 160, 52-77

The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood–brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.

Keywords: Alzheimer's disease, Blood-brain barrier, Drug delivery, Glioma, Parkinson's disease, Peptides, Self-assembly, Transcytosis


Williams, I., Lee, S., Apriceno, A., Sear, R. P., Battaglia, G., (2020). Diffusioosmotic and convective flows induced by a nonelectrolyte concentration gradient Proceedings of the National Academy of Sciences of the United States of America 117, (41), 25263-25271

Glucose is an important energy source in our bodies, and its consumption results in gradients over length scales ranging from the subcellular to entire organs. Concentration gradients can drive material transport through both diffusioosmosis and convection. Convection arises because concentration gradients are mass density gradients. Diffusioosmosis is fluid flow induced by the interaction between a solute and a solid surface. A concentration gradient parallel to a surface creates an osmotic pressure gradient near the surface, resulting in flow. Diffusioosmosis is well understood for electrolyte solutes, but is more poorly characterized for nonelectrolytes such as glucose. We measure fluid flow in glucose gradients formed in a millimeter-long thin channel and find that increasing the gradient causes a crossover from diffusioosmosis-dominated to convection-dominated flow. We cannot explain this with established theories of these phenomena which predict that both scale linearly. In our system, the convection speed is linear in the gradient, but the diffusioosmotic speed has a much weaker concentration dependence and is large even for dilute solutions. We develop existing models and show that a strong surface-solute interaction, a heterogeneous surface, and accounting for a concentration-dependent solution viscosity can explain our data. This demonstrates how sensitive nonelectrolyte diffusioosmosis is to surface and solution properties and to surface-solute interactions. A comprehensive understanding of this sensitivity is required to understand transport in biological systems on length scales from micrometers to millimeters where surfaces are invariably complex and heterogeneous.

Keywords: Convection, Diffusioosmosis, Microfluidics


Donnelly, Joanna L., Offenbartl-Stiegert, Daniel, Marín-Beloqui, José M., Rizzello, Loris, Battaglia, Guiseppe, Clarke, Tracey M., Howorka, Stefan, Wilden, Jonathan D., (2020). Exploring the relationship between BODIPY structure and spectroscopic properties to design fluorophores for bioimaging Chemistry - A European Journal 26, (4), 863-872

Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure–activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.


Bueno, C. Z., Apolinário, A. C., Duro-Castano, A., Poma, A., Pessoa, A., Jr., Rangel-Yagui, C. O., Battaglia, G., (2020). L-Asparaginase encapsulation into asymmetric permeable polymersomes ACS Macro Letters 9, (10), 1471-1477

This work reports, for the encapsulation of l-asparaginase, an anticancer enzyme into hybrid PMPC25-PDPA70/PEO16-PBO22 asymmetric polymersomes previously developed by our group, with loading capacities with over 800 molecules per vesicle. Enzyme-loaded polymersomes show permeability and capacity to hydrolyze l-asparagine, which is essential to cancer cells. The nanoreactors proposed in this work can be potentially used in further studies to develop novel therapeutic alternatives based on l-asparaginase.


Tian, Xiaohe, Angioletti-Uberti, Stefano, Battaglia, Giuseppe, (2020). On the design of precision nanomedicines Science Advances 6, (4), eaat0919

The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor–related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.


Tian, Xiaohe, Leite, Diana M., Scarpa, Edoardo, Nyberg, Sophie, Fullstone, Gavin, Forth, Joe, Matias, Diana, Apriceno, Azzurra, Poma, Alessandro, Duro-Castano, Aroa, Vuyyuru, Manish, Harker-Kirschneck, Lena, Šarić, Zhang, Zhongping, Xiang, Pan, Fang, Bin, Tian, Yupeng, Luo, Lei, Rizzello, Loris, Battaglia, Giuseppe, (2020). On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias Science Advances 6, (48), eabc4397

The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor–related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.


Fenaroli, Federico, Robertson, James D., Scarpa, Edoardo, Gouveia, Virginia M., Di Guglielmo, Claudia, De Pace, Cesare, Elks, Philip M., Poma, Alessandro, Evangelopoulos, Dimitrios, Ortiz, Julio, Prajsnar, Tomasz K., Marriott, Helen M., Dockrell, David H., Foster, Simon J., McHugh, Timothy D., Renshaw, Stephen A., Samitier, Josep, Battaglia, Giuseppe, Rizzello, Loris, (2020). Polymersomes eradicating intracellular bacteria ACS Nano 14, (7), 8287-8298

Mononuclear phagocytes such as monocytes, tissue-specific macrophages, and dendritic cells are primary actors in both innate and adaptive immunity. These professional phagocytes can be parasitized by intracellular bacteria, turning them from housekeepers to hiding places and favoring chronic and/or disseminated infection. One of the most infamous is the bacteria that cause tuberculosis (TB), which is the most pandemic and one of the deadliest diseases, with one-third of the world’s population infected and an average of 1.8 million deaths/year worldwide. Here we demonstrate the effective targeting and intracellular delivery of antibiotics to infected macrophages both in vitro and in vivo, using pH-sensitive nanoscopic polymersomes made of PMPC–PDPA block copolymer. Polymersomes showed the ability to significantly enhance the efficacy of the antibiotics killing Mycobacterium bovis, Mycobacterium tuberculosis, and another established intracellular pathogen, Staphylococcus aureus. Moreover, they demonstrated to easily access TB-like granuloma tissues—one of the harshest environments to penetrate—in zebrafish models. We thus successfully exploited this targeting for the effective eradication of several intracellular bacteria, including M. tuberculosis, the etiological agent of human TB.


Kocere, A., Resseguier, J., Wohlmann, J., Skjeldal, F. M., Khan, S., Speth, M., Dal, N. J. K., Ng, M. Y. W., Alonso-Rodriguez, N., Scarpa, E., Rizzello, L., Battaglia, G., Griffiths, G., Fenaroli, F., (2020). Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis EBioMedicine 58, 102902

Background: The developing zebrafish is an emerging tool in nanomedicine, allowing non-invasive live imaging of the whole animal at higher resolution than is possible in the more commonly used mouse models. In addition, several transgenic fish lines are available endowed with selected cell types expressing fluorescent proteins; this allows nanoparticles to be visualized together with host cells. Methods: Here, we introduce the zebrafish neural tube as a robust injection site for cancer cells, excellently suited for high resolution imaging. We use light and electron microscopy to evaluate cancer growth and to follow the fate of intravenously injected nanoparticles. Findings: Fluorescently labelled mouse melanoma B16 cells, when injected into this structure proliferated rapidly and stimulated angiogenesis of new vessels. In addition, macrophages, but not neutrophils, selectively accumulated in the tumour region. When injected intravenously, nanoparticles made of Cy5-labelled poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) (PEG-PDPA) selectively accumulated in the neural tube cancer region and were seen in individual cancer cells and tumour associated macrophages. Moreover, when doxorubicin was released from PEG-PDPA, in a pH dependant manner, these nanoparticles could strongly reduce toxicity and improve the treatment outcome compared to the free drug in zebrafish xenotransplanted with mouse melanoma B16 or human derived melanoma cells. Interpretation: The zebrafish has the potential of becoming an important intermediate step, before the mouse model, for testing nanomedicines against patient-derived cancer cells.


M Leite, D., Matias, D., Battaglia, G., (2020). The role of BAR proteins and the glycocalyx in brain endothelium transcytosis Cells 9, (12), 2685

Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.

Keywords: BAR proteins, Blood-brain barrier, Endothelium, Glycocalyx, Transcytosis, Tubulation


Scarpa, E., de Pace, C., Joseph, A. S., de Souza, S. C., Poma, A., Liatsi-Douvitsa, E., Contini, C., de Matteis, V., Samitier, J., Battaglia, G., Rizzello, L., (2020). Tuning cell behavior with nanoparticle shape PLoS ONE 15, (11), e0240197

We investigated how the shape of polymeric vesicles, made by the exact same material, impacts the replication activity and metabolic state of both cancer and non-cancer cell types. First, we isolated discrete geometrical structures (spheres and tubes) from a heterogeneous sample using density-gradient centrifugation. Then, we characterized the cellular internalization and the kinetics of uptake of both types of polymersomes in different cell types (either cancer or non-cancer cells). We also investigated the cellular metabolic response as a function of the shape of the structures internalized and discovered that tubular vesicles induce a significant decrease in the replication activity of cancer cells compared to spherical vesicles. We related this effect to the significant up-regulation of the tumor suppressor genes p21 and p53 with a concomitant activation of caspase 3/7. Finally, we demonstrated that combining the intrinsic shape-dependent effects of tubes with the delivery of doxorubicin significantly increases the cytotoxicity of the system. Our results illustrate how the geometrical conformation of nanoparticles could impact cell behavior and how this could be tuned to create novel drug delivery systems tailored to specific biomedical application.


De Pace, Cesare, Marchello, Gabriele, Perez, Lorena Ruiz, Battaglia, Giuseppe, (2020). Brownian tomography of biomolecules and soft polymer assemblies Microscopy and Microanalysis Microscopy and Microanalysis 2020 , Cambridge University Press (Virtual) 26, (S2), 1024-1025

One of the most powerful techniques for structural determination is electron microscopy (EM), which is able to achieve imaging at atomic resolution. However, EM requires keeping the beam under high vacuum to avoid undesired scattering in the electron path. This drawback leads to solidification techniques (such as controlled drying cryogenic techniques), which may alter the microstructure and chemical nature of the sample. The mesoscopic structure of biological and soft specimens is controlled by the presence of their media. Fast vitrification overcame these drawbacks; yet, cryogenic TEM works on static snapshots and does not allow the observation of dynamic events.


Gouveia, Virgínia M., Rizzello, Loris, Nunes, Claudia, Poma, Alessandro, Ruiz-Perez, Lorena, Oliveira, António, Reis, Salette, Battaglia, Giuseppe, (2019). Macrophage targeting pH responsive polymersomes for glucocorticoid therapy Pharmaceutics 11, (11), 614

Glucocorticoid (GC) drugs are the cornerstone therapy used in the treatment of inflammatory diseases. Here, we report pH responsive poly(2-methacryloyloxyethyl phosphorylcholine)–poly(2-(diisopropylamino)ethyl methacrylate) (PMPC–PDPA) polymersomes as a suitable nanoscopic carrier to precisely and controllably deliver GCs within inflamed target cells. The in vitro cellular studies revealed that polymersomes ensure the stability, selectivity and bioavailability of the loaded drug within macrophages. At molecular level, we tested key inflammation-related markers, such as the nuclear factor-κB, tumour necrosis factor-α, interleukin-1β, and interleukin-6. With this, we demonstrated that pH responsive polymersomes are able to enhance the anti-inflammatory effect of loaded GC drug. Overall, we prove the potential of PMPC–PDPA polymersomes to efficiently promote the inflammation shutdown, while reducing the well-known therapeutic limitations in GC-based therapy.

Keywords: Inflammation, Macrophages, Glucocorticoid, Polymersomes


Equipment

  • State-of-the-art facilities for cell culture including 5 class A cell cabinets: one dedicated for LPS and RNAse free cell culture and one dedicated for infected tissues
  • Fluorescence Activated Cell Sorting (FACS)
  • Confocal microscope to perform live cell 4D imaging
  • Thermocycler
  • Real-time PCR
  • Automated Western Blot
  • Gel Permeation Chromatography
  • High-Performance Liquid Chromatography
  • Ultra Performance Liquid Chromatography equipped with fluorescence, UV/Vis and Infrared and light scattering detectors
  • Dynamic light scattering unit
  • Nanoparticle tracking analysis
  • UV and Fluorescence spectroscopy
  • Automated liquid handling units
  • Nanoparticle production units

 

Collaborations

  • Xavier Salvatella
    IRB Barcelona
  • Francesca Peiro
    Physics-University of Barcelona
  • Kostas Kostarellos
    Life Science- University of Manchester/ICN2
  • Giorgio Volpe
    Chemistry-UCL
  • Simona Parrinello
    Cancer Institute -UCL
  • Finn Werner
    Structural Biology -UCL
  • Nick Lane
    Evolutionary Biology -UCL
  • Darren Hargraves
    Pediatric Neuro-Oncology -UCL
  • Timothy McHugh
    Clinical Microbiology =UCL
  • Sebastian Brander
    Neurology -UCL
  • Joan Abbott
    Physiology -King’s College London
  • Molly Stevens
    Bioengineering -Imperial College London
  • Stefano Angioletti-Uberti
    Materials Science -Imperial College London
  • Ricardo Sapienza
    Physics -Imperial College London
  • Daan Frenkel
    Chemisty-University of Cambridge
  • Charlotte Williams
    Chemistry -University of Oxford
  • Francesco Gervasio
    Pharmacology -University of Geneve/UCL, UK
  • Francesco Stellacci
    Bionegineering -EPFL Switzerland
  • Tambet Tessalu
    Cancer Biology -University of Tartu (Estonia)/ Sanford Burnham Prebys Medical Discovery Institute
  • Darrel Irvine
    Bioengineering -MIT
  • Xiaohe Tian
    Life Sciences University of Anhui
  • Yupeng Tian
    Chemistry University of Anhui
  • Lei Luo
    Pharmacy -Southwest University, China
  • Kai Luo
    HuaXi hospital Sichuan University
  • Darren Hargrave
    Great Ormond Street Hospital, UCLH London
  • Sebastian Brander
    Queen Square National Centre for Neurology, UCLH London

 

News

Senior Technician at the Molecular Bionics Research Group

Application Deadline: 25/04/2022
Ref: ST_GB

The Molecular Bionics group at the Institute for Bioengineering of Catalonia (IBEC) led by Prof. Giuseppe Battaglia at the Institute for Bioengineering of Catalonia (IBEC) is a research group whose general objective is to design and characterize bionic units that mimic specific biological functions and/or introduce operations that do not exist in Nature.

Please, visit the group external website for more information on our research (https://www.molecularbionics.org). Such an effort is multidisciplinary and involves inputs from Chemistry, Physics, and Cell and Molecular Biology.

Read more…

IBEC researchers participate in the “European Researchers’ Night”

Last Friday, September 24, the “European Researchers’ Night” took place, an event that is held on a European scale in more than 300 cities in 30 different countries. The objective of this event is to publicize the diversity of science and its impact on the daily lives of citizens in a close and inspiring way. For yet another year, IBEC has not wanted to miss it and has been present at various activities.

Read more…

Range selectivity, a new concept that could lead to more efficient nanoparticle drug delivery 

In a new study published in the scientific journal Nature Communications, researchers describe a new concept called “range selectivity”, explaining why biomimetic nanoparticles only bind to receptors when their density is within a precise range.

This finding could pave the way for the development of highly targeted therapies against a number of diseases.

Read more…

Bioengineering against the most resistant and deadly bacterial infections

An international team, led by Profs Giuseppe Battaglia and Loris Rizzello from the Institute for Bioengineering of Catalonia (IBEC), carried out out a study that opens the door to a new therapy capable of quickly and effectively eliminating infections caused by intracellular bacteria, the most resistant to immune defenses.

This therapy, based on synthetic vesicles, could considerably reduce the dose and duration of antimicrobial treatments, thus reducing the danger of generating resistance to antibiotics of pathogens such as those leading to tuberculosis.

Read more…

A “faster and safer” therapy against tuberculosis

A team of international scientists led by the Institute for Bioengineering of Catalonia (IBEC) has developed a “faster, more effective and safer” therapy to eliminate infections of intracellular bacteria that cause diseases such as tuberculosis. Scientists participating in the study include Group Leader Giuseppe Battaglia and the researcher Loris Rizzello of IBEC.

Read more…

 

 

Jobs