by Keyword: Aptamers

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Delcanale, P., Porciani, D., Pujals, S., Jurkevich, A., Chetrusca, A., Tawiah, K. D., Burke, D. H., Albertazzi, L., (2020). Aptamers with tunable affinity enable single-molecule tracking and localization of membrane receptors on living cancer cells Angewandte Chemie - International Edition 59, (42), 18546-18555

Tumor cell-surface markers are usually overexpressed or mutated protein receptors for which spatiotemporal regulation differs between and within cancers. Single-molecule fluorescence imaging can profile individual markers in different cellular contexts with molecular precision. However, standard single-molecule imaging methods based on overexpressed genetically encoded tags or cumbersome probes can significantly alter the native state of receptors. We introduce a live-cell points accumulation for imaging in nanoscale topography (PAINT) method that exploits aptamers as minimally invasive affinity probes. Localization and tracking of individual receptors are based on stochastic and transient binding between aptamers and their targets. We demonstrated single-molecule imaging of a model tumor marker (EGFR) on a panel of living cancer cells. Affinity to EGFR was finely tuned by rational engineering of aptamer sequences to define receptor motion and/or native receptor density.

Keywords: Aptamers, Cell-surface receptors, Live-cell imaging, PAINT, Single-molecule tracking

Urban, P., Valle-Delgado, J. J., Moles, E., Marques, J., Diez, C., Fernàndez-Busquets, X., (2012). Nanotools for the delivery of antimicrobial peptides Current Drug Targets , 13, (9), 1158-1172

Antimicrobial peptide drugs are increasingly attractive therapeutic agents as their roles in physiopathological processes are being unraveled and because the development of recombinant DNA technology has made them economically affordable in large amounts and high purity. However, due to lack of specificity regarding the target cells, difficulty in attaining them, or reduced half-lives, most current administration methods require high doses. On the other hand, reduced specificity of toxic drugs demands low concentrations to minimize undesirable side-effects, thus incurring the risk of having sublethal amounts which favour the appearance of resistant microbial strains. In this scenario, targeted delivery can fulfill the objective of achieving the intake of total quantities sufficiently low to be innocuous for the patient but that locally are high enough to be lethal for the infectious agent. One of the major advances in recent years has been the size reduction of drug carriers that have dimensions in the nanometer scale and thus are much smaller than -and capable of being internalized by- many types of cells. Among the different types of potential antimicrobial peptide-encapsulating structures reviewed here are liposomes, dendritic polymers, solid core nanoparticles, carbon nanotubes, and DNA cages. These nanoparticulate systems can be functionalized with a plethora of biomolecules providing specificity of binding to particular cell types or locations; as examples of these targeting elements we will present antibodies, DNA aptamers, cell-penetrating peptides, and carbohydrates. Multifunctional Trojan horse-like nanovessels can be engineered by choosing the adequate peptide content, encapsulating structure, and targeting moiety for each particular application.

Keywords: Antibodies, Aptamers, Dendrimers, Liposomes, Nanomedicine, Nanoparticles, Nanovectors, Targeting

Mir, M., (2011). Aptamers: The new biorecognition element for proteomic biosensing Biochemistry Research Updates (ed. Baginski, Simon J.), Nova Science Publishers, Inc (Hauppauge, USA) , -----

Aptamers are single stranded artificial nucleic acid ligands that can be generated against almost any kind of target, such as ions, metabolites aminoacids, drugs, toxins, proteins or whole cells. They are isolated from combinatorial libraries of synthetic nucleic acids by an iterative process of adsorption, recovery and amplification, know as SELEX (Systematic Evolution of Ligands by EXponential enrichment) process. Aptamers, the nucleic acid equivalent to antibodies, are easy to synthesise, is not required the use of animals for its synthesis, for this reason it can be developed again toxins and small molecules that do not produce immune response in animals and can be tuned for affinity in closer to assay conditions permitting recognition out of the physiological state. So, aptamers posses numerous advantages that make them preferred candidates as biorecognition elements. In view of the advantages and simple structure of aptamers, they have been used in a wide range of applications such as therapeutics, diagnosis, chromatography, environmental detection, among other.

Keywords: Aptamers, Biosensors, Protein recognition