by Keyword: Biophysics

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Alert, R., Trepat, X., (2020). Physical models of collective cell migration Annual Review of Condensed Matter Physics 11, 77-101

Collective cell migration is a key driver of embryonic development, wound healing, and some types of cancer invasion. Here, we provide a physical perspective of the mechanisms underlying collective cell migration. We begin with a catalog of the cell-cell and cell-substrate interactions that govern cell migration, which we classify into positional and orientational interactions. We then review the physical models that have been developed to explain how these interactions give rise to collective cellular movement. These models span the subcellular to the supracellular scales, and they include lattice models, phase-field models, active network models, particle models, and continuum models. For each type of model, we discuss its formulation, its limitations, and the main emergent phenomena that it has successfully explained. These phenomena include flocking and fluid-solid transitions, as well as wetting, fingering, and mechanical waves in spreading epithelial monolayers. We close by outlining remaining challenges and future directions in the physics of collective cell migration.

Keywords: Active network models, Cellular Potts models, Continuum models, Particle models, Phase-field models, Tissue biophysics

Kechagia, Jenny Z., Ivaska, Johanna, Roca-Cusachs, Pere, (2019). Integrins as biomechanical sensors of the microenvironment Nature Reviews Molecular Cell Biology 20, (8), 457-473

Integrins, and integrin-mediated adhesions, have long been recognized to provide the main molecular link attaching cells to the extracellular matrix (ECM) and to serve as bidirectional hubs transmitting signals between cells and their environment. Recent evidence has shown that their combined biochemical and mechanical properties also allow integrins to sense, respond to and interact with ECM of differing properties with exquisite specificity. Here, we review this work first by providing an overview of how integrin function is regulated from both a biochemical and a mechanical perspective, affecting integrin cell-surface availability, binding properties, activation or clustering. Then, we address how this biomechanical regulation allows integrins to respond to different ECM physicochemical properties and signals, such as rigidity, composition and spatial distribution. Finally, we discuss the importance of this sensing for major cell functions by taking cell migration and cancer as examples.

Keywords: Cell migration, Extracellular matrix, Integrins, Mechanotransduction, Single-molecule biophysics

Infante, Elvira, Stannard, Andrew, Board, Stephanie J., Rico-Lastres, Palma, Rostkova, Elena, Beedle, Amy E. M., Lezamiz, Ainhoa, Wang, Yong Jian, Gulaidi Breen, Samuel, Panagaki, Fani, Sundar Rajan, Vinoth, Shanahan, Catherine, Roca-Cusachs, Pere, Garcia-Manyes, Sergi, (2019). The mechanical stability of proteins regulates their translocation rate into the cell nucleus Nature Physics 15, 973-981

A cell’s ability to react to mechanical stimuli is known to be affected by the transport of transcription factors, the proteins responsible for regulating transcription of DNA into RNA, across the membrane enveloping its nucleus. Yet the molecular mechanisms by which mechanical cues control this process remain unclear. Here we show that one such protein, myocardin-related transcription factor A (MRTFA), is imported into the nucleus at a rate that is inversely correlated with its nanomechanical stability, but independent of its thermodynamic stability. Attaching mechanically stable proteins to MRTFA results in reduced gene expression and the subsequent slowing down of cell migration. We conclude that the mechanical unfolding of proteins regulates their nuclear translocation rate, and highlight the role of the nuclear pore complex as a selective mechanosensor that is capable of detecting forces as low as 10 pN. The modulation of the mechanical stability of transcription factors may represent a general strategy for the control of gene expression.

Keywords: Biological physics, Biophysics, Chemistry, Nanoscience and technology

Good, M., Trepat, X., (2018). Cell parts to complex processes, from the bottom up Nature 563, (7730), 188-189

Engineering approaches allow biological structures and behaviours to be reconstituted in vitro. A biologist and a physicist discuss the potential and limitations of this bottom-up philosophy in providing insights into complex biological processes.

Keywords: Biophysics, Complexity, Engineering

A. Mathur, P. Roca-Cusachs, O. M. Rossier, S. J. Wind, M. P. Sheetz, J. Hone, (2011). New approach for measuring protrusive forces in cells Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures , 29, (6), 06FA02

Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices , 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium

Lundin, Daniel, Torrents, Eduard, Poole, Anthony, Sjoberg, Britt-Marie, (2009). RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank BMC Genomics 10, (1), 589

BACKGROUND:Ribonucleotide reductases (RNRs) catalyse the only known de novo pathway for deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. While ribonucleotide reduction has a single evolutionary origin, significant differences between RNRs nevertheless exist, notably in cofactor requirements, subunit composition and allosteric regulation. These differences result in distinct operational constraints (anaerobicity, iron/oxygen dependence and cobalamin dependence), and form the basis for the classification of RNRs into three classes.DESCRIPTION:In RNRdb (Ribonucleotide Reductase database), we have collated and curated all known RNR protein sequences with the aim of providing a resource for exploration of RNR diversity and distribution. By comparing expert manual annotations with annotations stored in Genbank, we find that significant inaccuracies exist in larger databases. To our surprise, only 23% of protein sequences included in RNRdb are correctly annotated across the key attributes of class, role and function, with 17% being incorrectly annotated across all three categories. This illustrates the utility of specialist databases for applications where a high degree of annotation accuracy may be important. The database houses information on annotation, distribution and diversity of RNRs, and links to solved RNR structures, and can be searched through a BLAST interface. RNRdb is accessible through a public web interface at is a specialist database that provides a reliable annotation and classification resource for RNR proteins, as well as a tool to explore distribution patterns of RNR classes. The recent expansion in available genome sequence data have provided us with a picture of RNR distribution that is more complex than believed only a few years ago; our database indicates that RNRs of all three classes are found across all three cellular domains. Moreover, we find a number of organisms that encode all three classes.

Keywords: Enzymology (Biochemistry and Molecular Biophysics), Computer Applications (Computational Biology)

Sunyer, R., Ritort, F., Farre, R., Navajas, D., (2009). Thermal activation and ATP dependence of the cytoskeleton remodeling dynamics Physical Review E 79, (5), 51920

The cytoskeleton (CSK) is a nonequilibrium polymer network that uses hydrolyzable sources of free energy such as adenosine triphosphate (ATP) to remodel its internal structure. As in inert nonequilibrium soft materials, CSK remodeling has been associated with structural rearrangements driven by energy-activated processes. We carry out particle tracking and traction microscopy measurements of alveolar epithelial cells at various temperatures and ATP concentrations. We provide the first experimental evidence that the remodeling dynamics of the CSK is driven by structural rearrangements over free-energy barriers induced by thermally activated forces mediated by ATP. The measured activation energy of these forces is similar to 40k(B)T(r) (k(B) being the Boltzmann constant and T-r being the room temperature). Our experiments provide clues to understand the analogy between the dynamics of the living CSK and that of inert nonequilibrium soft materials.

Keywords: Biochemistry, Cellular biophysics, Free energy, Molecular biophysics, Physiological models

Koch, M. A., Engel, E., Planell, J. A., Lacroix, D., (2008). Cell seeding and characterisation of PLA/glass composite scaffolds for bone tissue engineering Journal of Biomechanics 16th Congress, European Society of Biomechanics , Elsevier (Lucerne, Switzerland) 41, (Supplement 1), S162

In this study polymer-glass composite scaffolds were characterized by permeability and porosity, two important properties for the use in perfusion bioreactors. These scaffolds were seeded with osteoblast-like cells to assess the efficiency of the used bioreactor. The used PLA/glass composite scaffolds are adequate for the perfusion culture. The high porosity and pore interconnectivity allow an even cell distribution and incorporation of a high cell number. For optimisation of the perfusion bioreactor system, further research has to be dedicated to the cell seeding and culture.

Keywords: Biomedical materials, Bioreactors, Bone, Cellular biophysics, Composite materials, Orthopaedics, Permeability, Polymers, Porosity, Porous materials, Tissue engineering

Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers 14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998

In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).

Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics