Publications

by Keyword: Cardiology


By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Romero, D., Lázaro, J., Jané, R., Laguna, P., Bailón, R., (2020). A quaternion-based approach to estimate respiratory rate from the vectorcardiogram Computers in Cardiology (CinC) 2020 Computing in Cardiology , IEEE (Rimini, Italy) 47, 1-4

A novel ECG-derived respiration (EDR) approach is presented to efficiently estimate the respiratory rate. It combines spatial rotations and magnitude variations of the heart's electrical vector due to respiration. Orthogonal leads X, Y and Z from 10 volunteers were analyzed during a tilt table test. The largest vector magnitude (VM) within each QRS loop was assessed, and its 3D coordinates were converted into unit quaternion qb. Angular distances between these quaternions and the axes of the reference coordinate system, θ x , θ y and θ z , were then computed as EDR signals to track their relative variations caused by respiration. The respiratory rate was estimated on the spectrum of individual EDR signals obtained from the angular distances and VM time-series, but also on EDR signals obtained by principal component analysis (PCA). Relative errors (eR) to the reference respiratory signal exhibited relatively low values. The combination of EDR signals' spectrum {θ X ,θ Y, θ Z , VM} (eR=0.63±4.15%) and individual signals derived from θ X (e R =0.46±8.22%) and PCA (eR=0.36±6.58%) achieved the overall best results. The proposed method represents a computationally efficient alternative to other EDR approaches, but its robustness should be further investigated. The method could be enhanced if combined with other features tracking morphological changes induced by respiration.

Keywords: Heart, Three-dimensional displays, Quaternions, Robustness, Computational efficiency, Cardiology, Principal component analysis


Blanco-Almazan, D., Romero, D., Groenendaal, W., Lijnen, L., Smeets, C., Ruttens, D., Catthoor, F., Jané, R., (2020). Relationship between heart rate recovery and disease severity in chronic obstructive pulmonary disease patients Computers in Cardiology (CinC) 2020 Computing in Cardiology , IEEE (Rimini, Italy) 47, 1-4

Chronic obstructive pulmonary disease (COPD) patients exhibit impaired autonomic control which can be assessed by heart rate variability analysis. The study aims to evaluate the cardiac autonomic responses of COPD patients after completing a conventional six-minute walk test (6MWT). Fifty COPD patients were included in the study, for which an ECG signal (lead II) was acquired by a wearable device, before, during, and after the test. We used the heart rate (HR) time-series to assess the heart rate dynamic during recovery. The heart rate recovery (HRR) marker was evaluated every 5 s after the 6MWT and showed different dynamic trends among severity groups. We compared the HRR among patient groups classified according to the GOLD standard. Significantly larger normalized HRR values (nHRR) were found in mild COPD patients (n=23, GOLD={1,2}; nHRR 1 =14.B±7.5 %, nHRR 2 =18.6±8.1 %) compared to those with more disease severity (n=23, GOLD={3,4}; nHRR 1 =9.3±5.8 %, p=0.002; and nHRR 2 = 13.7±6.7%, p=0.041). The largest differences were observed around the first 30 s of the recovery phase (nHRR=10.8±6.6 % vs. nHRR=5.6±4 % p=0.001). Our results showed a slower recovery for the severest patients, suggesting that cardiac parameters like the ones we propose here, may provide valuable information for a better characterization of COPD severity.

Keywords: Pulmonary diseases, Wearable computers, Electrocardiography, Market research, Cardiology, Heart rate variability


Sarlabous, L., Torres, A., Fiz, J. A., Morera, J., Jané, R., (2012). Evaluation and adaptive attenuation of the cardiac vibration interference in mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 3400-3403

The study of the mechanomyographic signal of the diaphragm muscle (MMGdi) is a promising technique in order to evaluate the respiratory muscles effort. The relationship between amplitude and frequency parameters of this signal with the respiratory effort performed during respiration is of great interest for researchers and physicians due to its diagnostic potentials. However, MMGdi signals are frequently contaminated by a cardiac vibration or mechanocardiographic (MCG) signal. An adaptive noise cancellation (ANC) can be used to reduce the MCG interference in the recorded MMGdi activity. In this paper, it is evaluated the proposed ANC scheme by means of a synthetic MMGdi signal with a controlled MCG interference. The Pearson's correlation coefficient (PCC) between both root mean square (RMS) and mean frequency (fm) of the synthetic MMGdi signal are considerably reduced with the presence of cardiac vibration noise (from 0.95 to 0.87, and from 0.97 to 0.76, respectively). With the ANC algorithm proposed the effect of the MCG noise on the amplitude and frequency of MMG parameters is reduced considerably (PCC of 0.93 and 0.97 for the RMS and fm, respectively). The ANC method proposed in this work is an interesting technique to attenuate the cardiac interference in respiratory MMG signals. Further investigation should be carried out to evaluate the performance of the ANC algorithm in real MMGdi signals.

Keywords: Adaptive filters, Frequency modulation, Interference, Muscles, Noise cancellation, Vibrations, Cardiology, Medical signal processing, Muscle, Signal denoising, ANC algorithm, MCG interference, Pearson correlation coefficient, Adaptive noise cancellation, Cardiac vibration interference, Cardiac vibration noise, Diaphragm muscle, Mechanocardiographic signal, Mechanomyographic signals, Respiratory muscles effort


Garde, A., Giraldo, B.F., Jané, R., Latshang, T.D., Turk, A.J., Hess, T., Bosch, M-.M., Barthelmes, D., Hefti, J.P., Maggiorini, M., Hefti, U., Merz, T.M., Schoch, O.D., Bloch, K.E., (2012). Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 707-710

High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1st and 2nd ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO2 and periodic breathing cycles significantly increased with acclimatization (p-value <; 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO2, through a significant negative correlation (p-value <; 0.01). Higher Pm is observed at climbing periods visually labeled as PB with >; 5 periodic breathing cycles through a significant positive correlation (p-value <; 0.01). Our data demonstrate that quantification of the respiratory volum- signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.

Keywords: Frequency domain analysis, Frequency modulation, Heart, Sleep apnea, Ventilation, Visualization, Cardiology, Medical disorders, Medical signal processing, Plethysmography, Pneumodynamics, Sensitivity analysis, Sleep, Spectral analysis, Cheyne-Stokes respiration, Climbing periods, Dataset, Heart failure patients, High altitude PB, High altitude periodic breathing, Hypobaric hypoxia, Linear discriminant analysis, Pathophysiologic aspects, Physical activity, Physiologic mechanisms, Power spectral density, Receiver operating characteristic curve, Respiratory control, Respiratory frequency, Respiratory inductive plethysmography, Respiratory pattern, Respiratory volume signal, Sleep apnea, Spectral analysis, Spectral parameters


Garde, A., Sörnmo, L., Jané, R., Giraldo, B. F., (2010). Correntropy-based nonlinearity test applied to patients with chronic heart failure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2399-2402

In this study we propose the correntropy function as a discriminative measure for detecting nonlinearities in the respiratory pattern of chronic heart failure (CHF) patients with periodic or nonperiodic breathing pattern (PB or nPB, respectively). The complexity seems to be reduced in CHF patients with higher risk level. Correntropy reflects information on both, statistical distribution and temporal structure of the underlying dataset. It is a suitable measure due to its capability to preserve nonlinear information. The null hypothesis considered is that the analyzed data is generated by a Gaussian linear stochastic process. Correntropy is used in a statistical test to reject the null hypothesis through surrogate data methods. Various parameters, derived from the correntropy and correntropy spectral density (CSD) to characterize the respiratory pattern, presented no significant differences when extracted from the iteratively refined amplitude adjusted Fourier transform (IAAFT) surrogate data. The ratio between the powers in the modulation and respiratory frequency bands R was significantly different in nPB patients, but not in PB patients, which reflects a higher presence of nonlinearities in nPB patients than in PB patients.

Keywords: Practical, Theoretical or Mathematical, Experimental/cardiology diseases, Fourier transforms, Medical signal processing, Pattern classification, Pneumodynamics, Spectral analysis, Statistical analysis, Stochastic processes/ correntropy based nonlinearity test, Chronic heart failure, Correntropy function, Respiratory pattern nonlinearities, CHF patients, Nonperiodic breathing pattern, Dataset statistical distribution, Dataset temporal structure, Nonlinear information, Null hypothesis, Gaussian linear stochastic process, Statistical test, Correntropy spectral density, Iteratively refined amplitude adjusted Fourier transform, Surrogate data, Periodic breathing pattern