Publications

by Keyword: Electrochemical sensor


By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Enshaei, H., Puiggalí-Jou, A., del Valle, L. J., Turon, P., Saperas, N., Alemán, C., (2021). Nanotheranostic interface based on antibiotic-loaded conducting polymer nanoparticles for real-time monitoring of bacterial growth inhibition Advanced Healthcare Materials

Conducting polymers have been increasingly used as biologically interfacing electrodes for biomedical applications due to their excellent and fast electrochemical response, reversible doping–dedoping characteristics, high stability, easy processability, and biocompatibility. These advantageous properties can be used for the rapid detection and eradication of infections associated to bacterial growth since these are a tremendous burden for individual patients as well as the global healthcare system. Herein, a smart nanotheranostic electroresponsive platform, which consists of chloramphenicol (CAM)-loaded in poly(3,4-ethylendioxythiophene) nanoparticles (PEDOT/CAM NPs) for concurrent release of the antibiotic and real-time monitoring of bacterial growth is presented. PEDOT/CAM NPs, with an antibiotic loading content of 11.9 ± 1.3% w/w, are proved to inhibit the growth of Escherichia coli and Streptococcus sanguinis due to the antibiotic release by cyclic voltammetry. Furthermore, in situ monitoring of bacterial activity is achieved through the electrochemical detection of β-nicotinamide adenine dinucleotide, a redox active specie produced by the microbial metabolism that diffuse to the extracellular medium. According to these results, the proposed nanotheranostic platform has great potential for real-time monitoring of the response of bacteria to the released antibiotic, contributing to the evolution of the personalized medicine.

Keywords: Bacterial detection, Chloramphenicol, Conducting polymers, Drug release, Electrochemical sensors, Electrostimulated release, Polythiophene


Kuphal, M., Mills, C.A., Korri-Youssoufi, H., Samitier, J., (2012). Polymer-based technology platform for robust electrochemical sensing using gold microelectrodes Sensors and Actuators B: Chemical 161, (1), 279-284

Rapid and inexpensive development of electrochemical sensors with good exploitation potential may be produced using a polymer as a substrate material. However, fabrication of polymer-based sensors is challenging. Using photolithography and etching of gold-coated poly(ethylene-2,6-naphthalate) (PEN), we have succeeded in fabricating disk-shaped and interdigitated microelectrodes (uEs). The electrodes have an excellent adhesion to the polymer and are encapsulated using a novel room-temperature process, applicable for low-cost, high-throughput fabrication. The PEN surface has been characterized in respect of wettability, surface energy and surface roughness. Finally, the electrodes give stable and reproducible electrochemical impedance spectroscopy and cyclic voltammetry responses, using the redox couple ferrocyanide and ruthenium hexamine. The results demonstrate the robustness and functionality of the polymer-based sensor platform with minimum feature sizes of 6 um.

Keywords: Poly(ethylene naphthalate), Photolithography, Microelectrodes, Interdigitated electrodes, Electrochemical characterization, Electrochemical sensor


Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2009). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 483-486

In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus Aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process

Keywords: Gas sensors, Electrochemical sensors, Chromatography