Publications

by Keyword: Galleria mellonella


By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Moya-Andérico, L., Vukomanovic, M., Cendra, M. D. M., Segura-Feliu, M., Gil, V., del Río, J. A., Torrents, E., (2021). Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology Chemosphere 266

The use of nanoparticles in consumer products is currently on the rise, so it is important to have reliable methods to predict any associated toxicity effects. Traditional in vitro assays fail to mimic true physiological responses of living organisms against nanoparticles whereas murine in vivo models are costly and ethically controversial. For these reasons, this study aimed to evaluate the efficacy of Galleria mellonella as an alternative, non-rodent in vivo model for examining nanoparticle toxicity. Silver, selenium, and functionalized gold nanoparticles were synthesized, and their toxicity was assessed in G. mellonella larvae. The degree of acute toxicity effects caused by each type of NP was efficiently detected by an array of indicators within the larvae: LD50 calculation, hemocyte proliferation, NP distribution, behavioral changes, and histological alterations. G. mellonella larvae are proposed as a nanotoxicological model that can be used as a bridge between in vitro and in vivo murine assays in order to obtain better predictions of NP toxicity. © 2020 Elsevier Ltd

Keywords: Galleria mellonella, Hemocytes, Nanoparticles, Nanotoxicity, Non-rodent in vivo model, Toxicity screening


Moya-Andérico, Laura, Admella, Joana, Fernandes, Rodrigo, Torrents, Eduard, (2020). Monitoring Gene Expression during a Galleria mellonella Bacterial Infection Microorganisms 8, (11), 1798

Galleria mellonella larvae are an alternative in vivo model that has been extensively used to study the virulence and pathogenicity of different bacteria due to its practicality and lack of ethical constraints. However, the larvae possess intrinsic autofluorescence that obstructs the use of fluorescent proteins to study bacterial infections, hence better methodologies are needed. Here, we report the construction of a promoter probe vector with bioluminescence expression as well as the optimization of a total bacterial RNA extraction protocol to enhance the monitoring of in vivo infections. By employing the vector to construct different gene promoter fusions, variable gene expression levels were efficiently measured in G. mellonella larvae at various time points during the course of infection and without much manipulation of the larvae. Additionally, our optimized RNA extraction protocol facilitates the study of transcriptional gene levels during an in vivo infection. The proposed methodologies will greatly benefit bacterial infection studies as they can contribute to a better understanding of the in vivo infection processes and pathogen–mammalian host interactions.

Keywords: Galleria mellonella, P. aeruginosa, Hemolymph, Hemocytes, Bioluminescence, Promoter probe vector, Optimized RNA extraction, Ribonucleotide reductases


Bach-Griera, Marc, Campo-Pérez, Víctor, Barbosa, Sandra, Traserra, Sara, Guallar-Garrido, Sandra, Moya-Andérico, Laura, Herrero-Abadía, Paula, Luquin, Marina, Rabanal, Rosa Maria, Torrents, Eduard, Julián, Esther, (2020). Mycolicibacterium brumae is a safe and non-toxic immunomodulatory agent for cancer treatment Vaccines 8, (2), 198

Intravesical Mycobacterium bovis Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical parameters were analyzed. Finally, histopathological alterations in mouse tissues were evaluated. Our results demonstrate the safety and non-toxic profile of M. brumae. Differences were observed in the biochemical, hematological and histopathological analysis between M. brumae and BCG-infected mice, as well as survival curves rates and colony forming units (CFU) counts in both animal models. M. brumae constitutes a safe therapeutic biological agent, overcoming the safety and toxicity disadvantages presented by BCG in both mice and G. mellonella animal models.

Keywords: Bladder cancer, Nontuberculous mycobacteria, BCG, Safety, Galleria mellonella, Mice


Blanco-Cabra, N., Vega-Granados, K., Moya-Andérico, L., Vukomanovic, M., Parra, A., Álvarez De Cienfuegos, L., Torrents, E., (2019). Novel oleanolic and maslinic acid derivatives as a promising treatment against Bacterial biofilm in nosocomial infections: An in vitro and in vivo study ACS Infectious Diseases 5, (9), 1581-1589

Oleanolic acid (OA) and maslinic acid (MA) are pentacyclic triterpenic compounds that abound in industrial olive oil waste. These compounds have renowned antimicrobial properties and lack cytotoxicity in eukaryotic cells as well as resistance mechanisms in bacteria. Despite these advantages, their antimicrobial activity has only been tested in vitro, and derivatives improving this activity have not been reported. In this work, a set of 14 OA and MA C-28 amide derivatives have been synthesized. Two of these derivatives, MA-HDA and OA-HDA, increase the in vitro antimicrobial activity of the parent compounds while reducing their toxicity in most of the Gram-positive bacteria tested, including a methicillin-resistant Staphylococcus aureus-MRSA. MA-HDA also shows an enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model of infection. A preliminary attempt to elucidate their mechanism of action revealed that these compounds are able to penetrate and damage the bacterial cell membrane. More significantly, their capacity to reduce antibiofilm formation in catheters has also been demonstrated in two sets of conditions: a static and a more challenged continuous-flow S. aureus biofilm.

Keywords: Antibiofilm, Galleria mellonella, In vitro and in vivo antimicrobials, Maslinic and oleanolic acids, Natural products, Staphylococcus aureus