Publications

by Keyword: Photo-crosslinking


By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Ruano, G., Díaz, A., Tononi, J., Torras, J., Puiggalí, J., Alemán, C., (2020). Biohydrogel from unsaturated polyesteramide: Synthesis, properties and utilization as electrolytic medium for electrochemical supercapacitors Polymer Testing 82, 106300

The utilization of hydrogels derived from biopolymers as solid electrolyte (SE) of electrochemical supercapacitors (ESCs) is a topic of increasing interest because of their promising applications in biomedicine (e.g. for energy storage in autonomous implantable devices). In this work an unsaturated polyesteramide that contains phenylalanine, butenediol and fumarate as building blocks has been photo-crosslinked to obtain a hydrogel (UPEA-h). The structure of UPEA-h, which is characterized by a network of open interconnected pores surrounded by regions with compact morphology, favors ion transport, while the biodegradability and biocompatibility conferred by the α-amino acid unit and the ester group are appropriated for its usage in the biomedical field. Voltammetric and galvanostatic assays have been conducted to evaluate the behavior of UPEA-h when used as SE in ESCs with poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes. Hence, PEDOT/UPEA-h devices displayed supercapacitor response of up 179 F/g and capacitance retention higher than 90%. Moreover, the long-term stability, leakage-current, and self-discharging response of PEDOT/UPEA-h ESCs reflect the great potential of UPEA-h as ion-conductive electrolyte. Indeed, the performance of PEDOT/UPEA-h is higher than found in analogous devices constructed using other biohydrogels as SE (e.g. κ-carrageenan, poly-γ-glutamic acid and cellulose hydrogels).

Keywords: Energy storage, Hydrogel electronics, Ion conductivity, Photo-crosslinking, Wearable electronics


Hamouda, I., Labay, C., Ginebra, M. P., Nicol, E., Canal, C., (2020). Investigating the atmospheric pressure plasma jet modification of a photo-crosslinkable hydrogel Polymer 192, 122308

Atmospheric pressure plasma jets (APPJ) have great potential in wound healing, bacterial disinfection and in cancer therapy. Recent studies pointed out that hydrogels can be used as screens during APPJ treatment, or even be used as reservoirs for reactive oxygen and nitrogen species generated by APPJ in liquids. Thus, novel applications are emerging for hydrogels which deserve fundamental exploration of the possible modifications undergone by the polymers in solution due to the reactivity with plasmas. Here we investigate the possible modifications occurred by APPJ treatment of an amphiphilic poly(ethylene oxide)-based triblock copolymer (tPEO) photo-crosslinkable hydrogel. While APPJ treatments lead to a certain degradation of the self-assembly of the polymeric chains at low concentrations (<2 g/L), at the higher concentrations required to form a hydrogel (>2 g/L), the polymeric chains are unaffected by APPJ and the hydrogel forming ability is kept. APPJ treatments induced a pre-crosslinking of the network with an increase of the mechanical properties of the hydrogel. Overall, the small modifications induced allow thinking of polymer solutions with hydrogel forming ability a new platform for several applications related to plasma medicine, and thus, with potential in different therapies.

Keywords: Atmospheric pressure plasma jet, Hydrogel, Photo-crosslinking, Polymer solution, Self-assembly