by Keyword: Probes

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Tian, X., De Pace, C., Ruiz-Perez, L., Chen, B., Su, R., Zhang, M., Zhang, R., Zhang, Q., Wang, Q., Zhou, H., Wu, J., Zhang, Z., Tian, Y., Battaglia, G., (2020). A Cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy Advanced Materials 32, (39), 2003901

The visualization of microtubules by combining optical and electron microscopy techniques provides valuable information to understand correlated intracellular activities. However, the lack of appropriate probes to bridge both microscopic resolutions restricts the areas and structures that can be comprehended within such highly assembled structures. Here, a versatile cyclometalated iridium (III) complex is designed that achieves synchronous fluorescence–electron microscopy correlation. The selective insertion of the probe into a microtubule triggers remarkable fluorescence enhancement and promising electron contrast. The long-life, highly photostable probe allows live-cell super-resolution imaging of tubulin localization and motion with a resolution of ≈30 nm. Furthermore, correlative light–electron microscopy and energy-filtered transmission electron microscopy reveal the well-associated optical and electron signal at a high specificity, with an interspace of ≈41 Å of microtubule monomer in cells.

Keywords: Correlation light–electron microscopy, Microtubules, Organometallic probes, Super-resolution microscopy

Gomila, G., Gramse, G., Fumagalli, L., (2014). Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films Nanotechnology 25, (25), 255702 (11)

A numerical analysis of the polarization force between a sharp conducting probe and a dielectric film of finite lateral dimensions on a metallic substrate is presented with the double objective of (i) determining the conditions under which the film can be approximated by a laterally infinite film and (ii) proposing an analytical model valid in this limit. We show that, for a given dielectric film, the critical diameter above which the film can be modeled as laterally infinite depends not only on the probe geometry, as expected, but mainly on the film thickness. In particular, for films with intermediate to large thicknesses (>100 nm), the critical diameter is nearly independent from the probe geometry and essentially depends on the film thickness and dielectric constant following a relatively simple phenomenological expression. For films that can be considered as laterally infinite, we propose a generalized analytical model valid in the thin-ultrathin limit (<20-50 nm) that reproduces the numerical calculations and the experimental data. Present results provide a general framework under which accurate quantification of electrostatic force microscopy measurements on dielectric films on metallic substrates can be achieved.

Keywords: Dielectric constant, Dielectric films, Electrostatic force microscopy, Quantification, Analytical models, Electric force microscopy, Electrostatic force, Film thickness, Permittivity, Probes, Substrates, Ultrathin films, Accurate quantifications, Electrostatic force microscopy, Finite size effect, Lateral dimension, Metallic substrate, Numerical calculation, Polarization forces, Quantification, Dielectric films

Caballero, D., Villanueva, G., Plaza, J. A., Mills, C. A., Samitier, J., Errachid, A., (2010). Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques Journal of Nanoscience and Nanotechnology , 10, (1), 497-501

The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

Keywords: Atomic-Force Microscope, Carbon nanotube tips, Probes, Roughness, Cells, Microfabrication, Calibration, Surfaces

Díez-Pérez, Ismael, Guell, Aleix Garcia, Sanz, Fausto, Gorostiza, Pau, (2006). Conductance maps by electrochemical tunneling spectroscopy to fingerprint the electrode electronic structure Analytical Chemistry , 78, (20), 7325-7329

We describe a methodology to perform reliable tunneling spectroscopy in electrochemical media. Sequential in situ tunneling spectra are recorded while the electrochemical potential of the electrode is scanned. Spectroscopic data are presented as conductance maps or conductograms that show the in situ electronic structure of an electrode surface while it undergoes an electrochemical reaction. The conductance map or conductogram represents the redox fingerprint of an electrode/liquid interface in a specific medium and can serve to predict its electrochemical behavior in a quantitative energy scale. The methodology is validated studying the reversible oxidation and passivity of an iron electrode in borate buffer, and we describe the main quantitative information that can be extracted concerning the semiconducting properties of the Fe passive film. This methodology is useful to study heterogeneous catalysis, electrochemical sensing and bioelectronic systems.

Keywords: Passive film, Oxide-film, Stainless-steel, Iron, Microscope, Surfaces, STM, Probes