Publications

by Keyword: Propelled micromotors


By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Vilela, Diana, Guix, Maria, Parmar, Jemish, Blanco‐Blanes, Àngel, Sánchez, Samuel, (2022). Micromotor‐in‐Sponge Platform for Multicycle Large‐Volume Degradation of Organic Pollutants Small 18, 2107619

Hortelao AC, Simó C, Guix M, Guallar-Garrido S, Julián E, Vilela D, Rejc L, Ramos-Cabrer P, Cossío U, Gómez-Vallejo V, Patiño T, Llop J, Sánchez S, (2021). Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder Science Robotics 6,

Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either I on gold nanoparticles or F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors’ self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications. 124 18

Keywords: cell, reversal, silica nanoparticles, size, step, transport, Propelled micromotors


Parmar, J., Villa, K., Vilela, D., Sánchez, S., (2017). Platinum-free cobalt ferrite based micromotors for antibiotic removal Applied Materials Today 9, 605-611

Self-propelled micromotors have previously shown to enhance pollutant removal compared to non-motile nano-micro particles. However, these systems are expensive, difficult to scale-up and require surfactant for efficient work. Efficient and inexpensive micromotors are desirable for their practical applications in water treatment technologies. We describe cobalt-ferrite based micromotors (CFO micromotors) fabricated by a facile and scalable synthesis, that produce hydroxyl radicals via Fenton-like reaction and take advantage of oxygen gas generated during this reaction for self-propulsion. Once the reaction is complete, the CFO micromotors can be easily separated and collected due to their magnetic nature. The CFO micromotors are demonstrated for highly efficient advanced oxidative removal of tetracycline antibiotic from the water. Furthermore, the effects of different concentrations of micromotors and hydrogen peroxide on the antibiotic degradation were studied, as well as the generation of the highly reactive hydroxyl radicals responsible for the oxidation reaction.

Keywords: Degradation, Fenton reaction, Microbots, Nanomotors, Self-propelled Micromotors, Water treatment