by Keyword: carbonate

By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Moreira, VB, Aleman, C, Rintjema, J, Bravo, F, Kleij, AW, Armelin, E, (2022). A Biosourced Epoxy Resin for Adhesive Thermoset Applications Chemsuschem 15, e202102624

Biobased epoxy-derived raw materials will be essential for future coating and adhesive designs in industry. Here, a facile approach is reported towards the incorporation of limonene into an epoxy-functionalized polycarbonate and its crosslinking with a polyamine curing agent to obtain a thermoset material. For the first time, a solvent-borne adhesive with excellent film-forming, mechanical and adhesion strength properties is described.

Keywords: adhesives, biobased epoxies, limonene, polycarbonate, Adhesives, Biobased epoxies, Biobased epoxy, Carbon-dioxide, Curing agents, Design in industries, Epoxides, Epoxy, Epoxy resins, Film adhesion, Film-forming, Functionalized, Limonene, Mechanical, Monomer, Monoterpenes, Oil, Oxide, Performance, Polyamines, Polycarbonate, Polycarbonates, Terpenes, Thermoset materials, Thermosets

Bonamigo Moreira, Vitor, Rintjema, Jeroen, Bravo, Fernando, Kleij, Arjan W., Franco, Lourdes, Puiggalí, Jordi, Alemán, Carlos, Armelin, Elaine, (2022). Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners Acs Sustainable Chemistry & Engineering 10, 2708-2719

In the area of coating development, it is extremely difficult to find a substitute for bisphenol A diglycidyl ether (DGEBA), the classical petroleum-based raw material used for the formulation of epoxy thermosets. This epoxy resin offers fast curing reaction with several hardeners and the best thermal and chemical resistance properties for applications in coatings and adhesive technologies. In this work, a new biobased epoxy, derived from poly(limonene carbonate) oxide (PLCO), was combined with polyetheramine and polyamineamide curing agents, offering a spectrum of thermal and mechanical properties, superior to DGEBA-based thermosets. The best formulation was found to be a combination of PLCO and a commercial curing agent (Jeffamine) in a stoichiometric 1:1 ratio. Although PLCO is a solid due to its high molecular weight, it was possible to create a two-component partially biobased epoxy paint without the need of volatile organic compounds (i.e., solvent-free formulation), intended for use in coating technology to partially replace DGEBA-based thermosets.

Keywords: acid, adhesion, epoxy thermoset, mechanical properties, monomer, polycarbonates, polymers, protection, resins, solvent-free paint, thermal properties, Adhesives, Biobased epoxy, Bisphenol-a-diglycidyl ethers, Carbonation, Coating development, Coating technologies, Curing, Curing agents, Epoxy coatings, Epoxy resins, Epoxy thermoset, Epoxy thermosets, Limonene oxide, Mechanical properties, Monoterpenes, Paint, Poly(limonene carbonate) oxide, Solvent free, Solvent-free paint, Thermal properties, Thermosets, Volatile organic compounds

Lopez-Muñoz, Gerardo A, Fernández-Costa, Juan M, Ortega, Maria Alejandra, Balaguer-Trias, Jordina, Martin-Lasierra, Eduard, Ramón-Azcón, Javier, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings

Vilela D, Blanco-Cabra N, Eguskiza A, Hortelao AC, Torrents E, Sanchez S, (2021). Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria Acs Applied Materials & Interfaces 13, 14964-14973

The low efficacy of current conventional treatments for bacterial infections increases mortality rates worldwide. To alleviate this global health problem, we propose drug-free enzyme-based nanomotors for the treatment of bacterial urinary-tract infections. We develop nanomotors consisting of mesoporous silica nanoparticles (MSNPs) that were functionalized with either urease (U-MSNPs), lysozyme (L-MSNPs), or urease and lysozyme (M-MSNPs), and use them against nonpathogenic planktonic Escherichia coli. U-MSNPs exhibited the highest bactericidal activity due to biocatalysis of urea into NaHCO3 and NH3, which also propels U-MSNPs. In addition, U-MSNPs in concentrations above 200 μg/mL were capable of successfully reducing 60% of the biofilm biomass of a uropathogenic E. coli strain. This study thus provides a proof-of-concept, demonstrating that enzyme-based nanomotors are capable of fighting infectious diseases. This approach could potentially be extended to other kinds of diseases by selecting appropriate biomolecules.

Keywords: biofilms, carbonate, e. coli, enzymatic nanomotors, infections, lysozyme, micromotors, nanomachines, proteins, self-propulsion, Biofilms, E. coli, Eliminate escherichia-coli, Enzymatic nanomotors, Infections, Nanomachines, Self-propulsion

Barba, A., Diez-Escudero, A., Espanol, M., Bonany, M., Sadowska, J. M., Guillem-Marti, J., Öhman-Mägi, C., Persson, C., Manzanares, M. C., Franch, J., Ginebra, M. P., (2019). Impact of biomimicry in the design of osteoinductive bone substitutes: Nanoscale matters ACS Applied Materials and Interfaces 11, (9), 8818-8830

Bone apatite consists of carbonated calcium-deficient hydroxyapatite (CDHA) nanocrystals. Biomimetic routes allow fabricating synthetic bone grafts that mimic biological apatite. In this work, we explored the role of two distinctive features of biomimetic apatites, namely, nanocrystal morphology (plate vs needle-like crystals) and carbonate content, on the bone regeneration potential of CDHA scaffolds in an in vivo canine model. Both ectopic bone formation and scaffold degradation were drastically affected by the nanocrystal morphology after intramuscular implantation. Fine-CDHA foams with needle-like nanocrystals, comparable in size to bone mineral, showed a markedly higher osteoinductive potential and a superior degradation than chemically identical coarse-CDHA foams with larger plate-shaped crystals. These findings correlated well with the superior bone-healing capacity showed by the fine-CDHA scaffolds when implanted intraosseously. Moreover, carbonate doping of CDHA, which resulted in small plate-shaped nanocrystals, accelerated both the intrinsic osteoinduction and the bone healing capacity, and significantly increased the cell-mediated resorption. These results suggest that tuning the chemical composition and the nanostructural features may allow the material to enter the physiological bone remodeling cycle, promoting a tight synchronization between scaffold degradation and bone formation.

Keywords: Biomimetic, Calcium phosphate, Carbonated apatite, Foaming, Nanostructure, Osteogenesis, Osteoinduction