Publications

by Keyword: nanoscale


By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Jain, A, Calo, A, Barcelo, D, Kumar, M, (2022). Supramolecular systems chemistry through advanced analytical techniques Analytical And Bioanalytical Chemistry

Supramolecular chemistry is the quintessential backbone of all biological processes. It encompasses a wide range from the metabolic network to the self-assembled cytoskeletal network. Combining the chemical diversity with the plethora of functional depth that biological systems possess is a daunting task for synthetic chemists to emulate. The only route for approaching such a challenge lies in understanding the complex and dynamic systems through advanced analytical techniques. The supramolecular complexity that can be successfully generated and analyzed is directly dependent on the analytical treatment of the system parameters. In this review, we illustrate advanced analytical techniques that have been used to investigate various supramolecular systems including complex mixtures, dynamic self-assembly, and functional nanomaterials. The underlying theme of such an overview is not only the exceeding detail with which traditional experiments can be probed but also the fact that complex experiments can now be attempted owing to the analytical techniques that can resolve an ensemble in astounding detail. Furthermore, the review critically analyzes the current state of the art analytical techniques and suggests the direction of future development. Finally, we envision that integrating multiple analytical methods into a common platform will open completely new possibilities for developing functional chemical systems.

Keywords: analytical techniques, dynamic self-assembly, high-speed afm, liquid cell tem, Analytical technique, Analytical techniques, Biological process, Chemical analysis, Chemical diversity, Complex networks, Cytoskeletal network, Dynamic self-assembly, High-speed afm, Hydrogels, In-situ, Liquid cell tem, Metabolic network, Microscopy, Nanoscale, Proteins, Self assembly, Supramolecular chemistry, Supramolecular systems, System chemistry, Systems chemistry


Andrian, T, Pujals, S, Albertazzi, L, (2021). Quantifying the effect of PEG architecture on nanoparticle ligand availability using DNA-PAINT Nanoscale Advances 3, 6876-6881

The importance of PEG architecture on nanoparticle (NP) functionality is known but still difficult to investigate, especially at a single particle level. Here, we apply DNA Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT), a super-resolution microscopy (SRM) technique, to study the surface functionality in poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs with different PEG structures. We demonstrated how the length of the PEG spacer can influence the accessibility of surface chemical functionality, highlighting the importance of SRM techniques to support the rational design of functionalized NPs.

Keywords: chain-length, density, plga, surface, systems, Chain-length, Density, Dna, Microscopy technique, Nanoparticles, Nanoscale topography, Paint, Peg spacers, Plga, Poly lactide-co-glycolide, Poly-lactide-co-glycolide, Polyethylene glycols, Polylactide-co-glycolide, Single-particle, Super-resolution microscopy, Superresolution microscopy, Surface, Surface chemicals, Surface functionalities, Systems


Lozano, Helena, Millan-Solsona, Ruben, Blanco-Cabra, Nuria, Fabregas, Rene, Torrents, Eduard, Gomila, Gabriel, (2021). Electrical properties of outer membrane extensions from Shewanella oneidensis MR-1 Nanoscale 13, 18754-18762

Outer membrane extensions from the metal-reducing bacterium Shewanella oneidensis MR-1 show an insulating behavior in dry air environment as measured by scanning dielectric microscopy.

Keywords: constant, dielectric polarization, microbial nanowires, nanoscale, transport, Air environment, Bacteria, Bacterial cells, Bacterial nanowires, Dry air, Metal-reducing bacteria, Outer membrane, Phase-minerals, Proteins, Shewanella oneidensis mr-1, Solid phasis, Solid-phase, Space division multiple access, Tubulars


Calò A, Eleta-Lopez A, Ondarçuhu T, Verdaguer A, Bittner AM, (2021). Nanoscale wetting of single viruses Molecules 26, 5184

The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ⁓1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.

Keywords: amplitude-modulation am-afm, atomic-force microscopy, capillary, force reconstruction, multifrequency afm, nanoscale wetting, persistence, reconstruction, relative-humidity, surfaces, tobacco mosaic virus (tmv), tobamovirus, transmission, water, Amplitude-modulation am-afm, Force reconstruction, Multifrequency afm, Nanoscale wetting, Tobacco mosaic virus (tmv), Tobacco mosaic virus (tmv), nanoscale wetting, Tobacco-mosaic-virus


Di Muzio M, Millan-Solsona R, Dols-Perez A, Borrell JH, Fumagalli L, Gomila G, (2021). Dielectric properties and lamellarity of single liposomes measured by in-liquid scanning dielectric microscopy JOURNAL OF NANOBIOTECHNOLOGY 19,

Liposomes are widely used as drug delivery carriers and as cell model systems. Here, we measure the dielectric properties of individual liposomes adsorbed on a metal electrode by in-liquid scanning dielectric microscopy in force detection mode. From the measurements the lamellarity of the liposomes, the separation between the lamellae and the specific capacitance of the lipid bilayer can be obtained. As application we considered the case of non-extruded DOPC liposomes with radii in the range ~ 100–800 nm. Uni-, bi- and tri-lamellar liposomes have been identified, with the largest population corresponding to bi-lamellar liposomes. The interlamellar separation in the bi-lamellar liposomes is found to be below ~ 10 nm in most instances. The specific capacitance of the DOPC lipid bilayer is found to be ~ 0.75 µF/cm2 in excellent agreement with the value determined on solid supported planar lipid bilayers. The lamellarity of the DOPC liposomes shows the usual correlation with the liposome's size. No correlation is found, instead, with the shape of the adsorbed liposomes. The proposed approach offers a powerful label-free and non-invasive method to determine the lamellarity and dielectric properties of single liposomes. [Figure not available: see fulltext.].

Keywords: constant, force, lamellarity, liposomes, membrane capacitance, model, nanoscale, scanning dielectric microscopy, Lamellarity, Liposomes, Membrane capacitance, Nanoscale, Polarization properties, Scanning dielectric microscopy


Checa M, Millan‐solsona R, Mares AG, Pujals S, Gomila G, (2021). Dielectric imaging of fixed hela cells by in‐liquid scanning dielectric force volume microscopy Nanomaterials 11,

Mapping the dielectric properties of cells with nanoscale spatial resolution can be an im-portant tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume mi-croscopy. Here, we demonstrate that such measurements can also be performed in the much more challenging case of fixed cells in liquid environment. Performing the measurements in liquid media contributes to preserve better the structure of the fixed cells, while also enabling accessing the local dielectric properties under fully hydrated conditions. The results shown in this work pave the way to address the nanoscale dielectric imaging of living cells, for which still further developments are required, as discussed here.

Keywords: atomic force microscopy (afm), capacitance, constant, dielectric properties, electrostatic force microscopy (efm), functional microscopy, nanoscale, scanning dielectric microscopy (sdm), Atomic force microscopy (afm), Dielectric properties, Dielectrophoretic separation, Electrostatic force microscopy (efm), Functional micros-copy, Scanning dielectric microscopy (sdm), Scanning probe microscopy (spm)


Fumagalli, Laura, Esteban-Ferrer, Daniel, Cuervo, Ana, Carrascosa, Jose L., Gomila, Gabriel, (2012). Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces Nature Materials Nature Publishing Group 11, (9), 743-826

Label-free detection of the material composition of nanoparticles could be enabled by the quantification of the nanoparticles’ inherent dielectric response to an applied electric field. However, the sensitivity of dielectric nanoscale objects to geometric and non-local effects makes the dielectric response extremely weak. Here we show that electrostatic force microscopy with sub-piconewton resolution can resolve the dielectric constants of single dielectric nanoparticles without the need for any reference material, as well as distinguish nanoparticles that have an identical surface but different inner composition. We unambiguously identified unlabelled ~10unm nanoparticles of similar morphology but different low-polarizable materials, and discriminated empty from DNA-containing virus capsids. Our approach should make the in situ characterization of nanoscale dielectrics and biological macromolecules possible.

Keywords: Biological materials, Nanoscale materials, Characterisation and analytical techniques, Computation, modelling and theory


van Zanten, T. S., Garcia-Parajo, M. F., (2012). Super-resolution near-field optical microscopy Comprehensive Biophysics (ed. Egelman, E. H.), Elsevier (Desdren, Germany) Volume 2: Biophysical Techniques for Characterization of Cells, 144-164

Near-field optical microscopy is a technique not limited by the laws of diffraction that enables simultaneous high-resolution fluorescence and topographic measurements at the nanometer scale. This chapter highlights the intrinsic advantages of near-field optics in the study of cellular structures. The first part of the chapter lays the foundations of the near-field concept and technical implementation of near-field scanning optical microscopy (NSOM), whereas the second part of the chapter focuses on applications of NSOM to the study of model membranes and cellular structures on the plasma membrane. The last part of the chapter discusses further directions of near-field optics, including optical antennas and fluorescence correlation spectroscopy approaches in the near-field regime.

Keywords: Biological membranes, Cell membrane nanoscale compartmentalization, Cellular nanodomains, Fluorescence correlation spectroscopy in reduced volumes, Immunoreceptor imaging, Lipid rafts, Near-field scanning optical microscopy, Optical nano-antennas, Shear force imaging, Single molecule detection, Super-resolution microscopy


Estevez, M., Fernandez-Ulibarri, I., Martinez, E., Egea, G., Samitier, J., (2010). Changes in the internal organization of the cell by microstructured substrates Soft Matter 6, (3), 582-590

Surface features at the micro and nanometre scale have been shown to influence and even determine cell behaviour and cytoskeleton organization through direct mechanotransductive pathways. Much less is known about the function and internal distribution of organelles of cells grown on topographically modified surfaces. In this study, the nanoimprint lithography technique was used to manufacture poly(methyl methacrylate) (PMMA) sheets with a variety of features in the micrometre size range. Normal rat kidney (NRK) fibroblasts were cultured on these substrates and immunofluorescence staining assays were performed to visualize cell adhesion, the organization of the cytoskeleton and the morphology and subcellular positioning of the Golgi complex. The results show that different topographic features at the micrometric scale induce different rearrangements of the cell cytoskeleton, which in turn alter the positioning and morphology of the Golgi complex. Microposts and microholes alter the mechanical stability of the Golgi complex by modifying the actin cytoskeleton organization leading to the compaction of the organelle. These findings prove that physically modified surfaces are a valuable tool with which to study the dynamics of cell cytoskeleton organization and its subsequent repercussion on internal cell organization and associated function.

Keywords: Actin stress fibers, Golgi-complex, Focal adhesions, Cytoskeletal organization, Osteoblast adhesion, Mammalian-cells, Micron-scale, Nanoscale, Dynamics, Rho