Publications

by Keyword: step


By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Hortelao AC, Simó C, Guix M, Guallar-Garrido S, Julián E, Vilela D, Rejc L, Ramos-Cabrer P, Cossío U, Gómez-Vallejo V, Patiño T, Llop J, Sánchez S, (2021). Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder Science Robotics 6,

Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either I on gold nanoparticles or F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors’ self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications. 124 18

Keywords: cell, reversal, silica nanoparticles, size, step, transport, Propelled micromotors


Vidal, E, Guillem-Marti, J, Ginebra, MP, Combes, C, Ruperez, E, Rodriguez, D, (2021). Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds SURFACE & COATINGS TECHNOLOGY 405,

Implants for orthopedic applications need to be biocompatible and bioactive, with mechanical properties similar to those of surrounding natural bone. Given this scenario titanium (Ti) scaffolds obtained by Direct Ink Writing technique offer the opportunity to manufacture customized structures with controlled porosity and mechanical properties. Considering that 3D Ti scaffolds have a significant surface area, it is necessary to develop strategies against the initial bacterial adhesion in order to prevent infection in the early stages of the implantation, while promoting cell adhesion to the scaffold. The challenge is not only achieving a balance between antibacterial activity and osseointegration, it is also to develop a homogeneous coating on the inner and outer surface of the scaffold. The purpose of this work was the development of a single-step electrodeposition process in order to uniformly cover Ti scaffolds with a layer of calcium phosphate (CaP) loaded with chlorhexidine digluconate (CHX). Scaffold characterization was assessed by scanning electron microscopy, Energy dispersive X-ray spectroscopy, X-ray diffraction, micro-Raman microscopy and compressive strength tests. Results determined that the surface of scaffolds was covered by plate-like and whisker-like calcium phosphate crystals, which main phases were octacalcium phosphate and brushite. Biological tests showed that the as-coated scaffolds reduced bacteria adhesion (73 +/- 3% for Staphylococcus aureus and 70 +/- 2% for Escherichia coli). In vitro cell studies and confocal analysis revealed the adhesion and spreading of osteoblast-like SaOS-2 on coated surfaces. Therefore, the proposed strategy can be a potential candidate in bone replacing surgeries.

Keywords: Antibacterial, Bacterial, Behavior, Biocompatibility, Calcium phosphate coating, Chlorhexidine, Chlorhexidine digluconate, Deposition, Electrodeposition, Hydroxyapatite coatings, Implants, One-step pulse electrodeposition, Plasma-spray, Release, Surface, Titanium scaffolds


Banos, R. C., Aznar, S., Madrid, C., Juarez, A., (2011). Differential functional properties of chromosomal- and plasmid-encoded H-NS proteins Research in Microbiology , 162, (4), 382-385

The nucleoid-associated protein H-NS can be either chromosomal- or plasmid-encoded. We provide in this report evidence indicating that chromosomal- and plasmid-encoded H-NS proteins may differ in their functional properties. The modulatory function of chromosomal H-NS is antagonized by the H-NSTEPEC protein. We show that the H-NS protein encoded by the IncHI plasmid R27 (H-NSR27) is less sensitive to H-NSTEPEC antagonism than its chromosomal counterpart. H-NSR27 plays a relevant role by modulating R27 conjugation in response to temperature. Hence, we suggest that this modulator has evolved to avoid the deregulation of R27 conjugation by H-NSTEPEC-like proteins.

Keywords: H-NS, Conjugation, R27, H-NS antagonism, H-NSTEPEC