Staff member


Anna Mura

Senior Researcher
Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS)
amura@ibecbarcelona.eu
+34 934012545
Staff member publications

Blancas, Maria, Valero, Cristina, Vouloutsi, Vasiliki, Mura, Anna, Verschure, P., (2021). Educational robotics: A journey, not a destination Handbook of Research on Using Educational Robotics to Facilitate Student Learning (ed. Papadakis, Stamatios, Kalogiannakis, Michail), IGI Global (Hershey, PA, USA) , 41-67

The aim of this work is two-fold. On the one hand, the authors wish to provide relevant information to educators willing to develop an educational robotics (ER) curriculum. They thus provide the current state of the art in the field of ER and the various approaches reported in the literature. They also provide examples of how computational thinking (CT) can be applied in ER and main theories behind ER: constructivism, constructionism, and inquiry-based learning. As ER requires problem-solving abilities, they discuss the link between CT and metacognition, which is considered one of the required educational improvements of the 21st century (also related to the role of gender in STEM methodologies). On the other hand, they wish to present their methodology to teach coding and ER (coding robots through exploring their affordances – CREA), how it was designed, and its main outcomes. It aims at teaching programming and robotics to children in primary school, focusing not on only the performance of the students, but also the cultivation of collaboration, communication, creativity, and critical thinking.


Blancas, Maria, Valero, Cristina, Mura, Anna, Vouloutsi, Vasiliki, Verschure, P., (2020). "CREA": An inquiry-based methodology to teach robotics to children Robotics in Education International Conference on Robotics in Education (RiE) , Springer International Publishing (Vienna, Austria) Advances in Intelligent Systems and Computing (AISC, volume 1023), 45-51

Learning programming and robotics offers the opportunity to practice problem-solving, creativity, and team-work and it provides important competencies to train for the 21st century. However, programming can be challenging, and children may encounter difficulties in learning the syntax or using the coding environment. To address this issue, we have developed a methodology for teaching programming, design and robotics based on inquiry-based learning and hands-on oriented activities together with visual programming. We have applied and evaluated this new methodology within the extracurricular activity of an international elementary school in Barcelona. Our findings showed acquisition and learning of technical language, understanding of electronics devices, understanding the mapping of coding into action via the robot’s behavior. This suggests that our approach is a valid and effective teaching methodology for the instructional design of robotics and programming.

Keywords: Educational technology, Instructional design, Robotics


Vouloutsi, Vasiliki, Mura, Anna, Tauber, F., Speck, T., Prescott, T. J., Verschure, P., (2020). Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings , Springer, Cham (Lausanne, Switzerland) 12413, 1-428

This book constitutes the proceedings of the )th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2020, held in Freiburg, Germany, in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 32 full and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

Keywords: Artificial intelligence, Soft robotics, Biomimetics, Insect navigation, Synthetic nervous system, Computer vision, Bio-inspired materials, Visual homing, Locomotion+, Image processing, Intelligent robots, Human-robot interaction, Machine learning, Snake robot, Mobile robots, Robotic systems, Drosophila, Robots, Sensors, Signal processing


Rubio Ballester, B., Mura, A., Maier, M., Tobella-Pareja, Laura, Alfayate-Domingo, D., Gimeno-Esteve, M. F., Aguilar, A., Verschure, P., (2019). Adaptive VR-based rehabilitation to prevent deterioration in adults with cerebral palsy Application of VR and Advanced Technology in Pediatric Populations International Conference on Virtual Rehabilitation 2019 (ICVR 2019) , ISVR (Tel Aviv, Israel) , 1-7

Cerebral palsy (CP) is a disabling life-long condition progressively impeding a patient’s independence. Although incident rates are high, a clear understanding of the disease is missing. CP is characterized by several motor disorders and sensory or perceptive comorbidities. This multifaceted nature complicates proper diagnosis and hampers the search for possible treatments. During adolescence and adulthood, individuals with CP experience a drastic deterioration in gross motor control, independence, and quality of life. There is poor evidence that physical therapy promotes the retention of function through aging, and no clinical studies exist that explore the potential of VRbased training to prevent deterioration. In this pilot randomized controlled trial, we expose 14 adults with CP to the Rehabilitation Gaming System (RGS) and examine its usability, effectiveness, and acceptability. Our results show that the RGS difficulty adaptation algorithm automatically matches the patients' impairment level as captured by clinical scales (Barthel and Box & Blocks). The clinical effectiveness and acceptability of the RGS and conventional therapy were comparable. We conclude that VR-based physical therapy as an adjunct to usual treatment may be a promising approach for the prevention of deterioration in adolescents and adults with CP.

Keywords: Cerebral palsy, Virtual realitY, Motor function, Physical therapy, Rehabilitation


Martinez-Hernandez, Uriel, Vouloutsi, Vasiliki, Mura, Anna, Mangan, Michael, Asada, Minoru, Prescott, T. J., Verschure, P., (2019). Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019, Nara, Japan, July 9–12, 2019, Proceedings , Springer, Cham (Lausanne, Switzerland) 11556, 1-384

This book constitutes the proceedings of the 8th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2019, held in Nara, Japan, in July 2019. The 26 full and 16 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

Keywords: Artificial intelligence, Biomimetics, Computer architecture, Human robot interaction, Human-Computer Interaction (HCI), Humanoid robot, Image processing, Learning algorithms, Mobile robots, Multipurpose robots, Neural networks, Quadruped robots, Reinforcement learning, Robot learning, Robotics, Robots, Sensor, Sensors, Swarm robotics, User interfaces


Vouloutsi, V., Halloy, J., Mura, A., Mangan, M., Lepora, N., Prescott, T. J., Verschure, P., (2018). Preface Biomimetic and Biohybrid Systems (ed. Vouloutsi, Vasiliki, Halloy, José, Mura, Anna, Mangan, Michael, Lepora, Nathan, Prescott, T. J., Verschure, P.), Springer International Publishing (Lausanne, Switzerland) 10928, V-VII

Vouloutsi, Vasiliki, Halloy, José, Mura, Anna, Mangan, Michael, Lepora, Nathan, Prescott, T. J., Verschure, P., (2018). Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018, Paris, France, July 17–20, 2018, Proceedings , Springer International Publishing (Lausanne, Switzerland) 10928, 1-551

This book constitutes the proceedings of the 7th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2018, held in Paris, France, in July 2018. The 40 full and 18 short papers presented in this volume were carefully reviewed and selected from 60 submissions. The theme of the conference targeted at the intersection of research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

Keywords: Artificial neural network, Bio-actuators, Bio-robotics, Biohybrid systems, Biomimetics, Bipedal robots, Earthoworm-like robots, Robotics, Decision-making, Tactile sensing, Soft robots, Locomotion, Insects, Sensors, Actuators, Robots, Artificial intelligence, Neural networks, Motion planning, Learning algorithms