Staff member


Francesco De Chiara

Postdoctoral Researcher
Biosensors for bioengineering
fdechiara@ibecbarcelona.eu
+34 934 039 735
Staff member publications

Lopez-Muñoz, Gerardo A., Ortega, Maria Alejandra, Ferret-Miñana, Ainhoa, De Chiara, Francesco, Ramón-Azcón, Javier, (2020). Direct and label-free monitoring of albumin in 2D fatty liver disease model using plasmonic nanogratings Nanomaterials 10, (12), 2520

Non-alcoholic fatty liver (NAFLD) is a metabolic disorder related to a chronic lipid accumulation within the hepatocytes. This disease is the most common liver disorder worldwide, and it is estimated that it is present in up to 25% of the world’s population. However, the real prevalence of this disease and the associated disorders is unknown mainly because reliable and applicable diagnostic tools are lacking. It is known that the level of albumin, a pleiotropic protein synthesized by hepatocytes, is correlated with the correct function of the liver. The development of a complementary tool that allows direct, sensitive, and label-free monitoring of albumin secretion in hepatocyte cell culture can provide insight into NAFLD’s mechanism and drug action. With this aim, we have developed a simple integrated plasmonic biosensor based on gold nanogratings from periodic nanostructures present in commercial Blu-ray optical discs. This sensor allows the direct and label-free monitoring of albumin in a 2D fatty liver disease model under flow conditions using a highly-specific polyclonal antibody. This technology avoids both the amplification and blocking steps showing a limit of detection within pM range (≈0.26 ng/mL). Thanks to this technology, we identified the optimal fetal bovine serum (FBS) concentration to maximize the cells’ lipid accumulation. Moreover, we discovered that the hepatocytes increased the amount of albumin secreted on the third day from the lipids challenge. These data demonstrate the ability of hepatocytes to respond to the lipid stimulation releasing more albumin. Further investigation is needed to unveil the biological significance of that cell behavior.

Keywords: 2D fatty liver in vitro model, Blu-Ray disc, Plasmonic nanomaterials, Label-Free Biosensing


Ortega, María A., Fernández-Garibay, Xiomara, Castaño, Albert G., De Chiara, Francesco, Hernández-Albors, Alejandro, Balaguer-Trias, Jordina, Ramón-Azcón, Javier, (2019). Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α Lab on a Chip 19, 2568-2580

Despite the increasing number of organs-on-a-chip that have been developed in the past decade, limited efforts have been made to integrate a sensing system for in situ continual measurements of biomarkers from three-dimensional (3D) tissues. Here, we present a custom-made integrated platform for muscle cell stimulation under fluidic conditions connected with a multiplexed high-sensitivity electrochemical sensing system for in situ monitoring. To demonstrate this, we use our system to measure the release levels and release time of interleukin 6 and tumor necrosis factor alpha in vitro by 3D muscle microtissue under electrical and biological stimulations. Our experimental design has enabled us to perform multiple time point measurements using functionalized screen-printed gold electrodes with sensitivity in the ng mL−1 range. This affordable setup is uniquely suited for monitoring factors released by 3D single cell types upon external stimulation for metabolic studies.


De Chiara, F., Checcllo, C. U., Ramón-Azcón, J., (2019). High protein diet and metabolic plasticity in non-alcoholic fatty liver disease: Myths and truths Nutrients 11, (12), 2985

Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation within the liver affecting 1 in 4 people worldwide. As the new silent killer of the twenty-first century, NAFLD impacts on both the request and the availability of new liver donors. The liver is the first line of defense against endogenous and exogenous metabolites and toxins. It also retains the ability to switch between different metabolic pathways according to food type and availability. This ability becomes a disadvantage in obesogenic societies where most people choose a diet based on fats and carbohydrates while ignoring vitamins and fiber. The chronic exposure to fats and carbohydrates induces dramatic changes in the liver zonation and triggers the development of insulin resistance. Common believes on NAFLD and different diets are based either on epidemiological studies, or meta-analysis, which are not controlled evidences; in most of the cases, they are biased on test-subject type and their lifestyles. The highest success in reverting NAFLD can be attributed to diets based on high protein instead of carbohydrates. In this review, we discuss the impact of NAFLD on body metabolic plasticity. We also present a detailed analysis of the most recent studies that evaluate high-protein diets in NAFLD with a special focus on the liver and the skeletal muscle protein metabolisms.

Keywords: High protein diet, Low carbohydrates, NAFLD, NASH, Physical activity