Staff member

Anna Labernadie

Postdoctoral Researcher
Integrative Cell and Tissue Dynamics
+34 934020183
Staff member publications

Park, D., Wershof, E., Boeing, S., Labernadie, A., Jenkins, R. P., George, S., Trepat, X., Bates, P. A., Sahai, E., (2020). Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions Nature Materials 19, 227-238

The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour ‘cell collision guidance’. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell–cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy.

Keywords: Biomaterials – cells, Cell migration, Self-assembly, Tissues

Conti, S., Kato, T., Park, D., Sahai, E., Trepat, X., Labernadie, A., (2020). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods in Molecular Biology (ed. Campbell, K., Thevenea, E.), Humana Press (New York, USA) 2179, 243-256

In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.

Keywords: 3D spheroid invasion, Cancer associated fibroblasts, Collective migration, Epithelial cancer cells, Leader/follower cells

Labernadie, Anna, Trepat, Xavier, (2018). Sticking, steering, squeezing and shearing: cell movements driven by heterotypic mechanical forces Current Opinion in Cell Biology 54, 57-65

During development, the immune response and cancer, cells of different types interact mechanically. Here we review how such heterotypic mechanical interactions enable cell movements. We begin by analyzing the heterotypic forces that single cells use to adhere and squeeze through tight barriers, as in the case of leucocyte extravasation and cancer metastasis. We next focus on the different mechanisms by which adjacent tissues influence each other's movements, with particular emphasis on dragging forces during dorsal closure in Drosophila and shearing forces during gastrulation in zebrafish. Finally, we discuss the mechanotransduction feedback loops that enable different cell types to steer each other's migration during development and cancer. We illustrate these migration modes focusing on the combination of attractive and repulsive cues during co-migration of neural crest cells and placodes in Xenopus, and of fibroblasts and cancer cells during invasion. Throughout the review, we discuss the nature of the heterotypic contact, which may involve both homophilic and heterophilic interactions between adhesion receptors.

Labernadie, A., Kato, T., Brugués, A., Serra-Picamal, X., Derzsi, S., Arwert, E., Weston, A., González-Tarragó, V., Elosegui-Artola, A., Albertazzi, L., Alcaraz, J., Roca-Cusachs, P., Sahai, E., Trepat, X., (2017). A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion Nature Cell Biology 19, (3), 224-237

Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.

Sunyer, R., Conte, V., Escribano, J., Elosegui-Artola, A., Labernadie, A., Valon, L., Navajas, D., García-Aznar, J. M., Muñoz, J. J., Roca-Cusachs, P., Trepat, X., (2016). Collective cell durotaxis emerges from long-range intercellular force transmission Science 353, (6304), 1157-1161

The ability of cells to follow gradients of extracellular matrix stiffness-durotaxis-has been implicated in development, fibrosis, and cancer. Here, we found multicellular clusters that exhibited durotaxis even if isolated constituent cells did not. This emergent mode of directed collective cell migration applied to a variety of epithelial cell types, required the action of myosin motors, and originated from supracellular transmission of contractile physical forces. To explain the observed phenomenology, we developed a generalized clutch model in which local stick-slip dynamics of cell-matrix adhesions was integrated to the tissue level through cell-cell junctions. Collective durotaxis is far more efficient than single-cell durotaxis; it thus emerges as a robust mechanism to direct cell migration during development, wound healing, and collective cancer cell invasion.

Vizoso, Miguel, Puig, Marta, Carmona, F. Javier, Maqueda, Maria, Velásquez, Adriana, Gomez, Antonio, Labernadie, Anna, Lugo, Roberto, Gabasa, Marta, Rigat-Brugarolas, Luis G., Trepat, Xavier, Ramírez, Jose, Reguart, Noemí, Moran, Sebastian, Vidal, Enrique, Perera, Alexandre, Esteller, Manel, Alcaraz, Jordi, (2015). Aberrant DNA methylation in Non Small Cell Lung Cancer associated fibroblasts Carcinogenesis , 32, (12), 1453-1463

Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical co-conspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in NSCLC patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance.