DONATE

Microenvironments for Medicine

ABOUT

We engineer biomaterials with controlled properties for applications in cell engineering, to support in vitro models and as tools for mechanobiology.

Our research focuses on the design of advanced biomaterials to engineer the cellular microenvironment, and has the potential to impact health by translating fundamental research into innovative therapies.

We have pioneered the design of materials that trigger the organisation of extracellular matrix proteins in a physiological way, a phenomenon that named material-driven protein fibrillogenesis (Science Advances 2016). We have also introduced new concepts in the field, such as the use viscosity to control cell behaviour (PNAS 2018); living biomaterials (bacteria-based materials) for stem cell engineering (Advanced Materials 2018); the low dose use of BMP-2 for bone regeneration (Advanced Science 2019), the relationship between matrix rigidity and metabolism (Nature Metabolism 2020) and interfaces that trigger the mechanical activation of growth factors (Advanced Materials 2024).

Our group develops radical new concepts that are pushed all the way through the translational ladder to tackle unmet clinical problems related to the health of people.

1. Engineered viscoelasticity in regenerative medicine and mechanobiology

We know that the extracellular matrix is viscoelastic yet most biomaterials that support tissue engineering and regenerative medicine approaches only consider the elasticity of biomaterials. We strive at design of materials where elasticity and viscosity can be tuned independently to provide 2D and 3D hydrogels that support dynamic cellular process and their physical remodelling.

2. in vitro models in health and disease

Improved in vitro models enable the study of human tissues in health and disease (e.g. cancer, degenerative diseases, inflammatory diseases), the assessment of new drug delivery tools (e.g. functional biomaterials, encapsulation delivery technologies, new microfluidic devices, etc.), and the cheaper and safer toxicity screening of new drug candidates. We develop robust extracellular matrix mimics, that provide the essential characteristics of a natural ECM in its ability to direct and control cell behaviour, yet with minimal complexity.

3. Engineered living biomaterials to control stem cell fate

Materials-based approaches to direct stem cell fate have resulted in major findings in relation to surface chemistry, stiffness and nanotopography. However, these models are a poor representation of in vivo behaviours, where cells interact with the extracellular matrix through a highly dynamic process. We have pioneered genetically engineered non-pathogenic bacteria that underpin living biomaterials that support stem cells. Living biomaterials that are responsive to small molecules and controlled by light will be new tools in the field.

STAFF

Manuel Salmeron Sanchez

Group Leader / ICREA Research Professor
msalmeronibecbarcelona.eu

PROJECTS

INTERNATIONAL GRANTSFINANCERPI
Devise · Engineered viscoelasticity in regenerative microenvironments (2023-2028)European Commission / ERC AdGManuel Salmeron
NATIONAL PROJECTSFINANCERPI
Viscoliver · Hidrogeles viscoelásticos como plataformas de cultivo 3D de células hepáticas para el modelado de la enfermedad del hígado graso no alcohólicoAgencia Estatal de Investigación / Proyectos de Generación de conocimiento 2022Gloria Gallego & Manuel Salmeron

PUBLICATIONS

EQUIPMENT

COLLABORATIONS

  • Matt Dalby
    University of Glasgow
  • Massimo Vassalli
    University of Glasgow
  • Molly Stevens
    University of Oxford
  • Pere Roca-Cusachs
    Institute for Bioengineering of Catalonia
  • Sylvain Gabrielle
    University of Mons
  • Amaia Cipitria
    Biogipuzkoa Health Research Institute
  • Andrés Garcia
    Georgia Institute of Technology
  • Gloria Gallego
    Universitat Politècnica de València

NEWS/JOBS

The Institute for Bioengineering of Catalonia and the Sant Joan de Déu Barcelona Children’s Hospital have held a joint conference to strengthen collaboration in bioengineering and translational medicine. The event, held this morning at the IBEC, highlighted innovative projects, presented a joint PhD programme and encouraged the exchange of ideas between researchers from both institutions.

IBEC and SJD Barcelona Children’s Hospital strengthen their collaboration with a day of translational innovation

The Institute for Bioengineering of Catalonia and the Sant Joan de Déu Barcelona Children’s Hospital have held a joint conference to strengthen collaboration in bioengineering and translational medicine. The event, held this morning at the IBEC, highlighted innovative projects, presented a joint PhD programme and encouraged the exchange of ideas between researchers from both institutions.

The 1st Translational Collaboration Day between the Vall d’Hebron Institute of Research (VHIR) and the Institute of Bioengineering of Catalonia (IBEC), held on 21st November, was an opportunity to learn about the projects and research lines of both institutions and to promote interaction between professionals.

IBEC and VHIR hold a collaboration day to promote synergies

The 1st Translational Collaboration Day between the Vall d’Hebron Institute of Research (VHIR) and the Institute of Bioengineering of Catalonia (IBEC), held on 21st November, was an opportunity to learn about the projects and research lines of both institutions and to promote interaction between professionals.

An IBEC-led study has revealed how mesenchymal stem cells respond to the viscosity of their environment, a key aspect in their differentiation process. The research, published in Nature Communications, provides new insights that could revolutionise the design of biomaterials for regenerative medicine applications.

Viscosity of materials key to cell differentiation

An IBEC-led study has revealed how mesenchymal stem cells respond to the viscosity of their environment, a key aspect in their differentiation process. The research, published in Nature Communications, provides new insights that could revolutionise the design of biomaterials for regenerative medicine applications.

The second IBEC-WCH Precision Medicine Conference took place last week in Chengdu, China. This is a partnership between the Institute for Bioengineering of Catalonia (IBEC) and the West China Hospital (WCH) of Sichuan University, which aims to strengthen scientific collaboration between the two countries.

IBEC and West China Hospital strengthen collaboration in precision medicine

The second IBEC-WCH Precision Medicine Conference took place last week in Chengdu, China. This is a partnership between the Institute for Bioengineering of Catalonia (IBEC) and the West China Hospital (WCH) of Sichuan University, which aims to strengthen scientific collaboration between the two countries.

IBEC kicks off 2024 with the incorporation of three new research groups led by Manuel Salmerón Sánchez, Zaida Álvarez Pinto, and Xavier Rovira Clavé. With these additions, IBEC strengthens its position in the field of advanced and emerging therapies.

IBEC is strengthened by the addition of three new research groups in advanced and emerging therapies

IBEC kicks off 2024 with the incorporation of three new research groups led by Manuel Salmerón Sánchez, Zaida Álvarez Pinto, and Xavier Rovira Clavé. With these additions, IBEC strengthens its position in the field of advanced and emerging therapies.

IBEC’s 16th annual Symposium focused on ‘Bioengineering for Future and Precision Medicine,’ one of IBEC’s three key application areas. Approximately 300 people attended the event, including local and international researchers. It provided a multidisciplinary environment where experts from other institutions and the IBEC community had the opportunity to present their projects and exchange knowledge.

Bioengineering for future medicine in the 16th IBEC Symposium

IBEC’s 16th annual Symposium focused on ‘Bioengineering for Future and Precision Medicine,’ one of IBEC’s three key application areas. Approximately 300 people attended the event, including local and international researchers. It provided a multidisciplinary environment where experts from other institutions and the IBEC community had the opportunity to present their projects and exchange knowledge.