by Keyword: 3d architecture

Macedo, MH, Torras, N, García-Díaz, M, Barrias, C, Sarmento, B, Martínez, E, (2023). The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model Biomaterials Advances 153, 213564

The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.Copyright © 2023. Published by Elsevier B.V.

JTD Keywords: 3d architecture, alkaline-phosphatase, caco-2 cells, culture, drug development, efflux proteins, gene-expression, human-colon, intestinal absorption, intestinal models, microenvironment, paracellular transport, permeability, photopolymerization, villi, 3d architecture, 3d bioprinting, Drug development, In-vitro, Intestinal absorption, Intestinal models, Photopolymerization, Villi

Altay, G, Abad-Lázaro, A, Gualda, EJ, Folch, J, Insa, C, Tosi, S, Hernando-Momblona, X, Batlle, E, Loza-Alvarez, P, Fernández-Majada, V, Martinez, E, (2022). Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium Advanced Healthcare Materials 11, 2201172

Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.© 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.

JTD Keywords: 3d architectures, biomolecular gradients, colon, crypt, engineering organoids, hydrogels, identification, in silico modeling, intestinal stem cell niches, light sheet fluorescence microscopy, niche, permeability, photolithography, regeneration, villus, wnt, 3d architectures, Biomolecular gradients, Engineering organoids, In silico modeling, Intestinal stem cell niches, Light sheet fluorescence microscopy, Photolithography, Stem-cell