by Keyword: Band-pass filters
Estrada-Petrocelli, L., Jané, R., Torres, A., (2020). Neural respiratory drive estimation in respiratory sEMG with cardiac arrhythmias Engineering in Medicine & Biology Society (EMBC) 42nd Annual International Conference of the IEEE , IEEE (Montreal, Canada) , 2748-2751
Neural respiratory drive as measured by the electromyography allows the study of the imbalance between the load on respiratory muscles and its capacity. Surface respiratory electromyography (sEMG) is a non-invasive tool used for indirectly assessment of NRD. It also provides a way to evaluate the level and pattern of respiratory muscle activation. The prevalence of electrocardiographic activity (ECG) in respiratory sEMG signals hinders its proper evaluation. Moreover, the occurrence of abnormal heartbeats or cardiac arrhythmias in respiratory sEMG measures can make even more challenging the NRD estimation. Respiratory sEMG can be evaluated using the fixed sample entropy (fSampEn), a technique which is less affected by cardiac artefacts. The aim of this work was to investigate the performance of the fSampEn, the root mean square (RMS) and the average rectified value (ARV) on respiratory sEMG signals with supraventricular arrhythmias (SVA) for NRD estimation. fSampEn, ARV and RMS parameters increased as the inspiratory load increased during the test. fSampEn was less influenced by ECG with SVAs for the NRD estimation showing a greater response to respiratory sEMG, reflected with a higher percentage increase with increasing load (228 % total increase, compared to 142 % and 135 % for ARV and RMS, respectively).
JTD Keywords: Electrocardiography, Muscles, Electrodes, Estimation, Band-pass filters, Electromyography, Heart beat
Ferrer-Lluis, I., Castillo-Escario, Y., Montserrat, J. M., Jané, R., (2019). Automatic event detector from smartphone accelerometry: Pilot mHealth study for obstructive sleep apnea monitoring at home Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 4990-4993
Obstructive sleep apnea (OSA) is a common disorder with a low diagnosis ratio, leaving many patients undiagnosed and untreated. In the last decades, accelerometry has been found to be a feasible solution to obtain respiratory activity and a potential tool to monitor OSA. On the other hand, many smartphone-based systems have already been developed to propose solutions for OSA monitoring and treatment. The objective of this work was to develop an automatic event detector based on smartphone accelerometry and pulse oximetry, and to assess its ability to detect thoracic movements. It was validated with a commercial OSA monitoring system at home. Results of this preliminary pilot study showed that the proposed event detector for accelerometry signals is a feasible tool to detect abnormal respiratory events, such as apneas and hypopneas, and has potential to be included in smartphone-based systems for OSA assessment.
JTD Keywords: Sleep apnea, Detectors, Pulse oximetry, Monitoring, Manuals, Band-pass filters, Pulse oximeter
Estrada, L., Sarlabous, L., Lozano-García, M., Jané, R., Torres, A., (2019). Neural offset time evaluation in surface respiratory signals during controlled respiration Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 2344-2347
The electrical activity of the diaphragm measured by surface electromyography (sEMGdi) provides indirect information on neural respiratory drive. Moreover, it allows evaluating the ventilatory pattern from the onset and offset (ntoff) estimation of the neural inspiratory time. sEMGdi amplitude variation was quantified using the fixed sample entropy (fSampEn), a less sensitive method to the interference from cardiac activity. The detection of the ntoff is controversial, since it is located in an intermediate point between the maximum value and the cessation of sEMGdi inspiratory activity, evaluated by the fSampEn. In this work ntoff detection has been analyzed using thresholds between 40% and 100 % of the fSampEn peak. Furthermore, fSampEn was evaluated analyzing the r parameter from 0.05 to 0.6, using a m equal to 1 and a sliding window size equal to 250 ms. The ntoff has been compared to the offset time (toff) obtained from the airflow during a controlled respiratory protocol varying the fractional inspiratory time from 0.54 to 0.18 whilst the respiratory rate was constant at 16 bpm. Results show that the optimal threshold values were between 66.0 % to 77.0 % of the fSampEn peak value. r values between 0.25 to 0.50 were found suitable to be used with the fSampEn.
JTD Keywords: Protocols, Low pass filters, Electrodes, Standards, Band-pass filters, Muscles, Cutoff frequency
Castillo-Escario, Y., Rodríguez-Cañón, M., García-Alías, G., Jané, R., (2019). Onset detection to study muscle activity in reaching and grasping movements in rats Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 5113-5116
EMG signals reflect the neuromuscular activation patterns related to the execution of a certain movement or task. In this work, we focus on reaching and grasping (R&G) movements in rats. Our objective is to develop an automatic algorithm to detect the onsets and offsets of muscle activity and use it to study muscle latencies in R&G maneuvers. We had a dataset of intramuscular EMG signals containing 51 R&G attempts from 2 different animals. Simultaneous video recordings were used for segmentation and comparison. We developed an automatic onset/offset detector based on the ratio of local maxima of Teager-Kaiser Energy (TKE). Then, we applied it to compute muscle latencies and other features related to the muscle activation pattern during R&G cycles. The automatic onsets that we found were consistent with visual inspection and video labels. Despite the variability between attempts and animals, the two rats shared a sequential pattern of muscle activations. Statistical tests confirmed the differences between the latencies of the studied muscles during R&G tasks. This work provides an automatic tool to detect EMG onsets and offsets and conducts a preliminary characterization of muscle activation during R&G movements in rats. This kind of approaches and data processing algorithms can facilitate the studies on upper limb motor control and motor impairment after spinal cord injury or stroke.
JTD Keywords: Muscles, Electromyography, Rats, Low pass filters, Microsoft Windows, Band-pass filters
Camara, M. A., Castillo, Y., Blanco-Almazan, D., Estrada, L., Jane, R., (2017). MHealth tools for monitoring Obstructive Sleep Apnea patients at home: Proof-of-concept Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1555-1558
Obstructive Sleep Apnea (OSA) is a sleep disorder that affects mainly the adult and elderly population. Due to the high percentage of patients who remain undiagnosed and untreated because of limitations of current diagnosis methods, the management of OSA is an important social, scientific and economic problem that will be difficult to be assumed by health systems. On the other hand, smartphone platforms (mHealth systems) are being considered as an innovative solution, thanks to the integration of the essential sensors to obtain clinically relevant parameters in the same device or in combination with wireless wearable devices.
JTD Keywords: Sleep apnea, Microphones, Monitoring, Sensors, Accelerometers, Biomedical monitoring, Band-pass filters
Sola-Soler, J., Giraldo, B. F., Fiz, J. A., Jané, R., (2015). Cardiorespiratory Phase Synchronization in OSA subjects during wake and sleep states Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 7708-7711
Cardiorespiratory Phase Synchronization (CRPS) is a manifestation of coupling between cardiac and respiratory systems complementary to Respiratory Sinus Arrhythmia. In this work, we investigated CRPS during wake and sleep stages in Polysomnographic (PSG) recordings of 30 subjects suspected from Obstructive Sleep Apnea (OSA). The population was classified into three severity groups according to the Apnea Hypopnea Index (AHI): G1 (AHI<;15), G2 (15<;=AHI<;30) and G3 (AHI>30). The synchrogram between single lead ECG and respiratory abdominal band signals from PSG was computed with the Hilbert transform technique. The different phase locking ratios (PLR) m:n were monitored throughout the night. Ratio 4:1 was the most frequent and it became more dominant as OSA severity increased. CRPS was characterized by the percentage of synchronized time (%Sync) and the average duration of synchronized epochs (AvDurSync) using three different thresholds. Globally, we observed that %Sync significantly decreased and AvDurSync slightly increased with OSA severity. A high synchronization threshold enhanced these population differences. %Sync was significantly higher in NREM than in REM sleep in G2 and G3 groups. Population differences observed during sleep did not translate to the initial wake state. Reduced CRPS could be an early marker of OSA severity during sleep, but further studies are needed to determine whether CRPS is also present during wakefulness.
JTD Keywords: Band-pass filters, Electrocardiography, Heart beat, Sleep apnea, Sociology, Statistics, Synchronization
Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2015). EMG-derived respiration signal using the fixed sample entropy during an Inspiratory load protocol Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 1703-1706
Extracting clinical information from one single measurement represents a step forward in the assessment of the respiratory muscle function. This attracting idea entails the reduction of the instrumentation and fosters to develop new medical integrated technologies. We present the use of the fixed sample entropy (fSampEn) as a more direct method to non-invasively derive the breathing activity from the diaphragm electromyographic (EMGdi) signal, and thus to extract the respiratory rate, an important vital sign which is cumbersome and time-consuming to be measured by clinicians. fSampEn is a method to evaluate the EMGdi activity that is less sensitive to the cardiac activity (ECG) and its application has proven to be useful to evaluate the load of the respiratory muscles. The behavior of the proposed method was tested in signals from two subjects that performed an inspiratory load protocol, which consists of increments in the inspiratory mouth pressure (Pmouth). Two respiratory signals were derived and compared to the Pmouth signal: the ECG-derived respiration (EDR) signal from the lead-I configuration, and the EMG-derived respiration (EMGDR) signal by applying the fSampEn method over the EMGdi signal. The similitude and the lag between signals were calculated through the cross-correlation between each derived respiratory signal and the Pmouth. The EMGDR signal showed higher correlation and lower lag values (≥ 0.91 and ≤ 0.70 s, respectively) than the EDR signal (≥ 0.83 and ≤0.99 s, respectively). Additionally, the respiratory rate was estimated with the Pmouth, EDR and EMGDR signals showing very similar values. The results from this preliminary work suggest that the fSampEn method can be used to derive the respiration waveform from the respiratory muscle electrical activity.
JTD Keywords: Band-pass filters, Electrocardiography, Electromyography, Entropy, Mouth, Muscles, Protocols
Estrada, L., Torres, A., Sarlabous, L., Fiz, J. A., Jané, R., (2014). Respiratory rate detection by empirical mode decomposition method applied to diaphragm mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3204-3207
Non-invasive evaluation of respiratory activity is an area of increasing research interest, resulting in the appearance of new monitoring techniques, ones of these being based on the analysis of the diaphragm mechanomyographic (MMGdi) signal. The MMGdi signal can be decomposed into two parts: (1) a high frequency activity corresponding to lateral vibration of respiratory muscles, and (2) a low frequency activity related to excursion of the thoracic cage. The purpose of this study was to apply the empirical mode decomposition (EMD) method to obtain the low frequency of MMGdi signal and selecting the intrinsic mode functions related to the respiratory movement. With this intention, MMGdi signals were acquired from a healthy subject, during an incremental load respiratory test, by means of two capacitive accelerometers located at left and right sides of rib cage. Subsequently, both signals were combined to obtain a new signal which contains the contribution of both sides of thoracic cage. Respiratory rate (RR) measured from the mechanical activity (RRMmg) was compared with that measured from inspiratory pressure signal (RRP). Results showed a Pearson's correlation coefficient (r = 0.87) and a good agreement (mean bias = -0.21 with lower and upper limits of -2.33 and 1.89 breaths per minute, respectively) between RRmmg and RRP measurements. In conclusion, this study suggests that RR can be estimated using EMD for extracting respiratory movement from low mechanical activity, during an inspiratory test protocol.
JTD Keywords: Accelerometers, Band-pass filters, Biomedical measurement, Empirical mode decomposition, Estimation, IP networks, Muscles