DONATE

Publications

Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.

Find here the list of all IBEC's publications by year.

by Keyword: Bayes classifier

Arboleda, Alejandro, Franco, Manuel, Naranjo, Francisco, Giraldo, Beatriz Fabiola, (2025). Electromyographic Diaphragm and Electrocardiographic Signal Analysis for Weaning Outcome Classification in Mechanically Ventilated Patients Sensors 25, 6000

Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals to classify the success or failure of weaning in mechanically ventilated patients. Electromyographic signals of 40 subjects were recorded using 5-channel surface electrodes placed around the diaphragm muscle, along with an ECG recording through a 3-lead Holter system during extubation. EMG and ECG signals were recorded from mechanically ventilated patients undergoing weaning trials. Linear and nonlinear signal analysis techniques were used to assess the interaction between diaphragm muscle activity and cardiac activity. Supervised machine learning algorithms were then used to classify the weaning outcomes. The study revealed clear differences in diaphragmatic and cardiac patterns between patients who succeeded and failed in the weaning trials. Successful weaning was characterised by a higher ECG-derived respiration amplitude, whereas failed weaning was characterised by an elevated EMG amplitude. Furthermore, successful weaning exhibited greater oscillations in diaphragmatic muscle activity. Spectral analysis and parameter extraction identified 320 parameters, of which 43 were significant predictors of weaning outcomes. Using seven of these parameters, the Naive Bayes classifier demonstrated high accuracy in classifying weaning outcomes. Surface electromyographic and electrocardiographic signal analyses can predict weaning outcomes in mechanically ventilated patients. This approach could facilitate the early identification of patients at risk of weaning failure, allowing for improved clinical management.

JTD Keywords: Cardiorespiratory characterisation, Classification, Coherence, Diaphragm, Ecg, Electromyography, Emg, Heart-rate-variability, Mechanical ventilation, Naive bayes classifier, Predictor, Signal analysis, Surface electromyography, Time-series analysis, Time-varying spectral analysis, Weaning outcome


Solà, J., Fiz, J. A., Morera, J., Jané, R., (2012). Multiclass classification of subjects with sleep apnoea-hypopnoea syndrome through snoring analysis Medical Engineering and Physics , 34, (9), 1213-1220

The gold standard for diagnosing sleep apnoea-hypopnoea syndrome (SAHS) is polysomnography (PSG), an expensive, labour-intensive and time-consuming procedure. Accordingly, it would be very useful to have a screening method to allow early assessment of the severity of a subject, prior to his/her referral for PSG. Several differences have been reported between simple snorers and SAHS patients in the acoustic characteristics of snoring and its variability. In this paper, snores are fully characterised in the time domain, by their sound intensity and pitch, and in the frequency domain, by their formant frequencies and several shape and energy ratio measurements. We show that accurate multiclass classification of snoring subjects, with three levels of SAHS, can be achieved on the basis of acoustic analysis of snoring alone, without any requiring information on the duration or the number of apnoeas. Several classification methods are examined. The best of the approaches assessed is a Bayes model using a kernel density estimation method, although good results can also be obtained by a suitable combination of two binary logistic regression models. Multiclass snore-based classification allows early stratification of subjects according to their severity. This could be the basis of a single channel, snore-based screening procedure for SAHS.

JTD Keywords: Bayes classifier, Kernel density estimation, Sleep apnoea, Snoring