DONATE

Publications

by Keyword: Beta-amyloid

Salgado, Blanca, Izquierdo, Beatriz, Zapata, Alba, Sastre, Isabel, Kristen, Henrike, Terreros, Julia, Mejias, Victor, Bullido, Maria J, Aldudo, Jesus, (2024). Cholesterol Modulation Attenuates the AD-like Phenotype Induced by Herpes Simplex Virus Type 1 Infection Biomolecules 14, 603

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (M beta CD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon M beta CD treatment. Moreover, M beta CD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. M beta CD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (A beta) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.

JTD Keywords: Alzheimer's disease, Arterial cells, Beta-amyloid, Cholesterol, Hsv-1, Hyperphosphorylated ta, Infection, Lysosomal alterations, Methyl-beta-cyclodextrin, Neuroblastoma cells, Neurodegeneration, Syste


Perich, MP, Palma-Florez, S, Solé, C, Goberna-Ferrón, S, Samitier, J, Gómez-Romero, P, Mir, M, Lagunas, A, (2023). Polyoxometalate-Decorated Gold Nanoparticles Inhibit β-Amyloid Aggregation and Cross the Blood-Brain Barrier in a µphysiological Model Nanomaterials 13, 2697

Alzheimer's disease is characterized by a combination of several neuropathological hallmarks, such as extracellular aggregates of beta amyloid (Aβ). Numerous alternatives have been studied for inhibiting Aβ aggregation but, at this time, there are no effective treatments available. Here, we developed the tri-component nanohybrid system AuNPs@POM@PEG based on gold nanoparticles (AuNPs) covered with polyoxometalates (POMs) and polyethylene glycol (PEG). In this work, AuNPs@POM@PEG demonstrated the inhibition of the formation of amyloid fibrils, showing a 75% decrease in Aβ aggregation in vitro. As it is a potential candidate for the treatment of Alzheimer's disease, we evaluated the cytotoxicity of AuNPs@POM@PEG and its ability to cross the blood-brain barrier (BBB). We achieved a stable nanosystem that is non-cytotoxic below 2.5 nM to human neurovascular cells. The brain permeability of AuNPs@POM@PEG was analyzed in an in vitro microphysiological model of the BBB (BBB-on-a-chip), containing 3D human neurovascular cell co-cultures and microfluidics. The results show that AuNPs@POM@PEG was able to cross the brain endothelial barrier in the chip and demonstrated that POM does not affect the barrier integrity, giving the green light to further studies into this system as a nanotherapeutic.

JTD Keywords: beta-amyloid, blood-brain barrier organ-on-a-chip, cellular uptake, citrate, cytotoxicity, electrocatalytic reduction, gold nanoparticles, hypothesis, nanorods, polyoxometalates, size, stability, surface, Alzheimers-disease, Blood–brain barrier organ-on-a-chip, Gold nanoparticles, Nanovehicle, Polyoxometalates, Β-amyloid


Arimon, M., Sanz, F., Giralt, E., Carulla, N., (2012). Template-assisted lateral growth of amyloid-β42 fibrils studied by differential labeling with gold nanoparticles Bioconjugate Chemistry , 23, (1), 27-32

Amyloid-β protein (Aβ) aggregation into amyloid fibrils is central to the origin and development of Alzheimer’s disease (AD), yet this highly complex process is poorly understood at the molecular level. Extensive studies have shown that Aβ fibril growth occurs through fibril elongation, whereby soluble molecules add to the fibril ends. Nevertheless, fibril morphology strongly depends on aggregation conditions. For example, at high ionic strength, Aβ fibrils laterally associate into bundles. To further study the mechanisms leading to fibril growth, we developed a single-fibril growth assay based on differential labeling of two Aβ42 variants with gold nanoparticles. We used this assay to study Aβ42 fibril growth under different conditions and observed that bundle formation is preceded by lateral interaction of soluble Aβ42 molecules with pre-existing fibrils. Based on this data, we propose template-assisted lateral fibril growth as an additional mechanism to elongation for Aβ42 fibril growth.

JTD Keywords: AFM, Beta-Amyloid Fibrils, Polymorphism, Association, Elongation, Dynamics, State


Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

JTD Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking