by Keyword: Beta-cyclodextrin
Salgado, Blanca, Izquierdo, Beatriz, Zapata, Alba, Sastre, Isabel, Kristen, Henrike, Terreros, Julia, Mejias, Victor, Bullido, Maria J, Aldudo, Jesus, (2024). Cholesterol Modulation Attenuates the AD-like Phenotype Induced by Herpes Simplex Virus Type 1 Infection Biomolecules 14, 603
Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (M beta CD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon M beta CD treatment. Moreover, M beta CD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. M beta CD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (A beta) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.
JTD Keywords: Alzheimer's disease, Arterial cells, Beta-amyloid, Cholesterol, Hsv-1, Hyperphosphorylated ta, Infection, Lysosomal alterations, Methyl-beta-cyclodextrin, Neuroblastoma cells, Neurodegeneration, Syste
Vukomanovic, M, Gazvoda, L, Kurtjak, M, Hrescak, J, Jaklic, B, Moya-Anderico, L, Cendra, MD, Torrents, E, (2022). Development of a ternary cyclodextrin-arginine-ciprofloxacin antimicrobial complex with enhanced stability Commun Biol 5, 1234
Designing useful functionalities in clinically validated, old antibiotics holds promise to provide the most economical solution for the global lack of effective antibiotics, as undoubtedly a serious health threat. Here we show that using the surface chemistry of the cyclodextrin (beta CD) cycle and arginine (arg) as a linker, provides more stable ternary antibiotic complex (beta CD-arg-cpx). In contrast to classical less stable inclusion complexes, which only modify antibiotic solubility, here-presented ternary complex is more stable and controls drug release. The components of the complex intensify interactions with bacterial membranes and increase the drug's availability inside bacterial cells, thereby improving its antimicrobial efficacy and safety profile. Multifunctional antibiotics, formulated as drug delivery systems per se, that take the drug to the site of action, maximize its efficacy, and provide optical detectability are envisaged as the future in fighting against infections. Their role as a tool against multiresistant strains remains as interesting challenge open for further research.; Ternary cyclodextrin- arginine- ciprofloxacin complexes show improved stability and increased efficacy against P. aeruginosa in Galleria mellonella worms.
JTD Keywords: Antibiotic-resistance, Beta-cyclodextrin, Dissolution, Drugs, Salts