by Keyword: Biomedical device
Fontana-Escartin, Adrian, El Hauadi, Karima, Perez-Madrigal, Maria M, Lanzalaco, Sonia, Turon, Pau, Aleman, Carlos, (2024). Mechanical and ex-vivo assessment of functionalized surgical sutures for bacterial infection monitoring European Polymer Journal 212, 113050
Surgical sutures are long-established medical devices that play an important role closing and healing damaged tissues and organs postoperatively. However, current commercial sutures are not able to detect infections at the wound site, which are quite frequent after surgery. In this work, we present mechanically stable smart sutures for the real-time monitoring of bacterial growth and biofilm formation. For this purpose, a conducting polymer named poly(3,4-ethylenedioxythiophene) (PEDOT), which is able to detect bacteria metabolites, was implemented as a coating onto commercial biostable sutures. A protecting hydrogel layer with adhesive properties, which was made of polydopamine-polyacrylamide (PDA-PAM), was used to prevent the detachment of the sensing coating of PEDOT upon looping and knotting the suture. The protective hydrogel preserved not only the knot mechanical properties of the suture but also the electrochemical response of the PEDOT-coating and, therefore, its ability to detect NADH from bacteria respiration. Ex-vivo assays using sutured swine intestine samples demonstrated that the suture with the PDA-PAM hydrogel layer detects the growth of bacteria in real tissues. As a proof of concept, sutures coated with PEDOT and protected with PDA-PAM were used to inhibit the local growth of bacteria in sutured intestines by applying controlled electrostimuli. Results evidenced that smart electro-responsive sutures can be used as multi-task devices focused on fighting bacterial infections, meaning not only monitoring but also hampering bacteria growth.
JTD Keywords: 4-ethylenedioxythiophene), Bacteria growth detection, Bacteria growth inhibition, Multi-task biomedical devices, Nanoparticles, Pape, Poly(3, Polydopamine-polyacrylamide, Sensor, Smart suture
Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263
Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204
This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.
JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment