by Keyword: Bone-marrow
Oliver-Vila, I, Sesma-Herrero, E, Belda, F, Seriola, A, Ojosnegros, S, (2025). Robust differentiation and potent immunomodulation of human mesenchymal stromal cells cultured with a xeno-free GMP protein supplement Cytotherapy 27, 552-561
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited. Here, we evaluate a xeno-free human plasma-derived protein supplement (Plastem, Grifols) for the expansion and functional evaluation of hMSCs. Methods: hMSC from bone marrow, adipose tissue and umbilical cord were obtained from two suppliers and cultured in Dulbecco's modified Eagle's medium (DMEM/F-12) supplemented with fetal bovine serum 10% (FBS), human platelet lysate 5% (hPL) or Plastem 10%+ hPL0.5%. Cell proliferation was evaluated after culturing hMSC for 13 days with trypan blue exclusion. hMSC immunophenotype was assessed by flow cytometry of surface markers expression. Multipotentiality assay determined the ability of hMSC to differentiate into osteogenic, chondrogenic and adipogenic lineages after 21 days, by using specific staining. Immunomodulatory properties of hMSC were analyzed by measuring suppression of human peripheral blood mononuclear cell (PBMC) proliferation in co-culture with hMSC. Results: Plastem 10% + hPL 0.5% supported robust and sustained hMSC growth with a similar efficiency to the reference supplement FBS 10%. hMSC cultured with the xeno-free supplement presented a similar morphology comparable to FBS-supplemented cells and maintained typical expression of markers: positive (>95%) for CD90, CD73 and CD105; and negative (
JTD Keywords: Animal serum, Bone-marrow, Cell culture media, Cell therapy manufacturing, Expansion, Human mesenchymal stromal cells, Human platelet lysate, Immunomodulation, International-society, Multipotentiality, Proliferation, Serum-free media, Stem-cells, Substitut, Therapy, Xeno-fre
Bonilla-Pons, SA, Nakagawa, S, Bahima, EG, Fernández-Blanco, A, Pesaresi, M, D'Antin, JC, Sebastian-Perez, R, Greco, D, Domínguez-Sala, E, Gómez-Riera, R, Compte, RIB, Dierssen, M, Pulido, NM, Cosma, MP, (2022). Müller glia fused with adult stem cells undergo neural differentiation in human retinal models Ebiomedicine 77, 103914
Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons.We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation.We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids.We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies.This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).Published by Elsevier B.V.
JTD Keywords: cell fusion, expression, fusion, ganglion-cells, in-vitro, mouse, müller glia, neural differentiation, organoids, regeneration, retina regeneration, stem cells, stromal cells, transplantation, 4',6 diamidino 2 phenylindole, 5' nucleotidase, Agarose, Alcohol, Arpe-19 cell line, Article, Beta catenin, Beta tubulin, Bone-marrow-cells, Bromophenol blue, Buffer, Calcium cell level, Calcium phosphate, Calretinin, Canonical wnt signaling, Cd34 antigen, Cell culture, Cell fusion, Cell viability, Coculture, Complementary dna, Confocal microscopy, Cornea transplantation, Cryopreservation, Cryoprotection, Crystal structure, Current clamp technique, Dimethyl sulfoxide, Dodecyl sulfate sodium, Edetic acid, Electrophysiology, Endoglin, Fetal bovine serum, Fibroblast growth factor 2, Flow cytometry, Fluorescence activated cell sorting, Fluorescence intensity, Glyceraldehyde 3 phosphate dehydrogenase, Glycerol, Glycine, Hoe 33342, Immunofluorescence, Immunohistochemistry, Incubation time, Interleukin 1beta, Lentivirus vector, Matrigel, Mercaptoethanol, Microinjection, Mueller cell, Müller glia, N methyl dextro aspartic acid, Nerve cell differentiation, Neural differentiation, Nitrogen, Nonhuman, Organoids, Paraffin, Paraffin embedding, Paraformaldehyde, Patch clamp technique, Penicillin derivative, Phenolsulfonphthalein, Phenotype, Phosphate buffered saline, Phosphoprotein phosphatase inhibitor, Polyacrylamide gel electrophoresis, Potassium chloride, Povidone iodine, Promoter region, Proteinase inhibitor, Real time polymerase chain reaction, Receptor type tyrosine protein phosphatase c, Restriction endonuclease, Retina, Retina dystrophy, Retina regeneration, Retinol, Rhodopsin, Rna extraction, Stem cell, Stem cells, Subcutaneous fat, Tunel assay, Visual impairment, Western blotting
Almendros, Isaac, Carreras, Alba, Montserrat, Josep M., Gozal, David, Navajas, Daniel, Farre, Ramon, (2012). Potential role of adult stem cells in obstructive sleep apnea Frontiers in Neurology 3, 1-6
Adult stem cells are undifferentiated cells that can be mobilized from the bone marrow or other organs, home into injured tissues and differentiate into different cell phenotypes to serve in a repairing capacity. Furthermore, these cells can respond to inflammation and oxidative stress by exhibiting immunomodulatory properties. The protective and reparative roles of mesenchymal stem cells (MSCs), very small embryonic-like stem cells (VSELs) and endothelial progenitor cells (EPCs) have primarily been examined and characterized in auto-immune and cardiovascular diseases. Obstructive sleep apnea (OSA) is a very prevalent disease (4-5% of adult population and 2-3% of children) characterized by an abnormal increase in upper airway collapsibility. Recurrent airway obstructions elicit arterial oxygen desaturations, increased inspiratory efforts and sleep fragmentation, which have been associated with important long-term neurocognitive, metabolic, and cardiovascular consequences. Since inflammation, oxidative stress and endothelial dysfunction are key factors in the development of the morbid consequences of OSA, bone marrow-derived stem cells could be important modulators of the morbid phenotype by affording a protective role. This mini-review is focused on the recent data available on EPCs, VSELs and MSCs in both animal models and patients with OSA.
JTD Keywords: Mesenchymal Stem Cells, Sleep Apnea, Endothelial progenitor cells, Very Small-like Embryonic Stem Cells, Adult bone-marrow derived stem cells
Rodriguez-Segui, S. A., Pla, M., Engel, E., Planell, J. A., Martinez, E., Samitier, J., (2009). Influence of fabrication parameters in cellular microarrays for stem cell studies
Journal of Materials Science: Materials in Medicine , 20, (7), 1525-1533
Lately there has been an increasing interest in the development of tools that enable the high throughput analysis of combinations of surface-immobilized signaling factors and which examine their effect on stem cell biology and differentiation. These surface-immobilized factors function as artificial microenvironments that can be ordered in a microarray format. These microarrays could be useful for applications such as the study of stem cell biology to get a deeper understanding of their differentiation process. Here, the evaluation of several key process parameters affecting the cellular microarray fabrication is reported in terms of its effects on the mesenchymal stem cell culture time on these microarrays. Substrate and protein solution requirements, passivation strategies and cell culture conditions are investigated. The results described in this article serve as a basis for the future development of cellular microarrays aiming to provide a deeper understanding of the stem cell differentiation process.
JTD Keywords: Bone-marrow, Protein microarrays, Progenitor cells, Differentiation, Surfaces, Growth, Biomaterials, Commitment, Pathways, Culture media