DONATE

Publications

by Keyword: Burde

Bernabeu, M, Prieto, A, Salguero, D, Miro, L, Cabrera-Rubio, R, Collado, M C, Huttener, M, Perez-Bosque, A, Juarez, A, (2024). Infection of mice by the enteroaggregative E. coli strain 042 and two mutant derivatives overexpressing virulence factors: impact on disease markers, gut microbiota and concentration of SCFAs in feces Scientific Reports 14, 16945

Several pathogenic Escherichia coli strains cause diarrhea. Enteroaggregative E. coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC cells form a "stacked-brick" arrangement over the intestinal epithelial cells. EAEC isolates express, among other virulence determinants, the AggR transcriptional activator and the aggregative adherence fimbriae (AAF). Overexpression of the aggR gene results in increased expression of virulence factors such as the aff genes, as well as several genes involved in specific metabolic pathways such as fatty acid degradation (fad) and arginine degradation (ast). To support the hypothesis that induction of the expression of some of these pathways may play a role in EAEC virulence, in this study we used a murine infection model to evaluate the impact of the expression of these pathways on infection parameters. Mice infected with a mutant derivative of the EAEC strain 042, characterized by overexpression of the aggR gene, showed increased disease symptoms compared to those exhibited by mice infected with the wild type (wt) strain 042. Several of these symptoms were not increased when the infecting mutant, which overexpressed aggR, lacked the fad and ast pathways. Therefore, our results support the hypothesis that different metabolic pathways contribute to EAEC virulence.

JTD Keywords: Adherence, Aggr, Burde, Chain fatty-acids, Children, Enteroaggregative e. coli, Escherichia-coli, Etiology, Infection, Mice, Microbiota, Persistent diarrhea, Protein, Scfa, Sex-differences


Blanco-Almazan, D, Groenendaal, W, Lijnen, L, Onder, R, Smeets, C, Ruttens, D, Catthoor, F, Jane, R, (2022). Breathing Pattern Estimation Using Wearable Bioimpedance for Assessing COPD Severity Ieee Journal Of Biomedical And Health Informatics 26, 5983-5991

Breathing pattern has been shown to be different in chronic obstructive pulmonary disease (COPD) patients compared to healthy controls during rest and walking. In this study we evaluated respiratory parameters and the breathing variability of COPD patients as a function of their severity. Thoracic bioimpedance was acquired on 66 COPD patients during the performance of the six-minute walk test (6MWT), as well as 5 minutes before and after the test while the patients were seated, i.e. resting and recovery phases. The patients were classified by their level of airflow limitation into moderate and severe groups. We characterized the breathing patterns by evaluating common respiratory parameters using only wearable bioimpedance. Specifically, we computed the median and the coefficient of variation of the parameters during the three phases of the protocol, and evaluated the statistical differences between the two COPD severity groups. We observed significant differences between the COPD severity groups only during the sitting phases, whereas the behavior during the 6MWT was similar. Particularly, we observed an inverse relationship between breathing pattern variability and COPD severity, which may indicate that the most severely diseased patients had a more restricted breathing compared to the moderate patients.

JTD Keywords: 6mwt, activation, breathing pattern, burden, chronic obstructive pulmonary disease, exercise, muscles, pressure, pulmonary, signals, variability, volumes, wearables, Bioimpedance, Impedance pneumography


Bolognesi, Benedetta, Lehner, Ben, (2018). Reaching the limit eLife 7, e39804

How many copies of a protein can be made before it becomes toxic to the cell?

JTD Keywords: Protein burden, Overexpression, Glycolysis


Planell, J. A., Navarro, M., (2009). Challenges in bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

JTD Keywords: Social impact of musculoskeletal disease, Economic burden of musculoskeletal disease, Social aspects of dental and maxillofacial conditions, Some clinical challenges of bone repair, Conclusions and future trends, Sources of further information and advice