by Keyword: CA1

Bos, J. J., Vinck, M., Marchesi, P., Keestra, A., van Mourik-Donga, L. A., Jackson, J. C., Verschure, P., Pennartz, C. M. A., (2019). Multiplexing of self and other information in hippocampal ensembles Cell Reports 29, (12), 3859-3871.e6

In addition to coding a subject’s location in space, the hippocampus has been suggested to code social information, including the spatial position of conspecifics. “Social place cells” have been reported for tasks in which an observer mimics the behavior of a demonstrator. We examine whether rat hippocampal neurons may encode the behavior of a minirobot, but without requiring the animal to mimic it. Rather than finding social place cells, we observe that robot behavioral patterns modulate place fields coding animal position. This modulation may be confounded by correlations between robot movement and changes in the animal’s position. Although rat position indeed significantly predicts robot behavior, we find that hippocampal ensembles code additional information about robot movement patterns. Fast-spiking interneurons are particularly informative about robot position and global behavior. In conclusion, when the animal’s own behavior is conditional on external agents, the hippocampus multiplexes information about self and others.

JTD Keywords: CA1, Decoding, Information theory, Interneuron, Mutual information, Place cells, Place field, Tobot, Docial behavior, Tetrode

Madronal, Noelia, Lopez-Aracil, Cristina, Rangel, Alejandra, del Rio, Jose A., Delgado-Garcia, Jose M., Gruart, Agnes, (2010). Effects of Enriched Physical and Social Environments on Motor Performance, Associative Learning, and Hippocampal Neurogenesis in Mice PLoS ONE 5, (6), e11130

We have studied the motor abilities and associative learning capabilities of adult mice placed in different enriched environments. Three-month-old animals were maintained for a month alone (AL), alone in a physically enriched environment (PHY), and, finally, in groups in the absence (SO) or presence (SOPHY) of an enriched environment. The animals' capabilities were subsequently checked in the rotarod test, and for classical and instrumental learning. The PHY and SOPHY groups presented better performances in the rotarod test and in the acquisition of the instrumental learning task. In contrast, no significant differences between groups were observed for classical eyeblink conditioning. The four groups presented similar increases in the strength of field EPSPs (fEPSPs) evoked at the hippocampal CA3-CA1 synapse across classical conditioning sessions, with no significant differences between groups. These trained animals were pulse-injected with bromodeoxyuridine (BrdU) to determine hippocampal neurogenesis. No significant differences were found in the number of NeuN/BrdU double-labeled neurons. We repeated the same BrdU study in one-month-old mice raised for an additional month in the above-mentioned four different environments. These animals were not submitted to rotarod or conditioned tests. Non-trained PHY and SOPHY groups presented more neurogenesis than the other two groups. Thus, neurogenesis seems to be related to physical enrichment at early ages, but not to learning acquisition in adult mice.

JTD Keywords: Long-term potentiation, Adult neurogenesis, Synaptic transmission, Cell proliferation, CA3-CA1 synapse, Granule cells