DONATE

Publications

by Keyword: Collagen type IV

Lehmann, J., Praktiknjo, M., Nielsen, M. J., Schierwagen, R., Meyer, C., Thomas, D., Violi, F., Strassburg, C. P., Bendtsen, F., Moller, S., Krag, A., Karsdal, M. A., Leeming, D. J., Trebicka, J., (2019). Collagen type IV remodelling gender-specifically predicts mortality in decompensated cirrhosis Liver International 39, (5), 885-893

Background & Aims: Remodelling of extracellular matrix is crucial in progressive liver fibrosis. Collagen type III desposition has been shown in acute decompensation. Extratracellular matrix is compiled of deposition of various components. The role of basement membrane collagen type IV in advanced cirrhosis and acute decompensation is unclear and investigated in this study. Methods: Patients with decompensated cirrhosis from the prospective NEPTUN cohort (ClinicalTrials.gov Identifier: NCT03628807), who underwent transjugular intrahepatic portosystemic shunt procedure were included. Clinical and laboratory parameters, PRO-C4 and C4M levels were measured in blood samples from portal and hepatic veins just before transjugular intrahepatic portosystemic shunt placement. Results: Levels of C4M and PRO-C4 are significantly lower in patients with massive ascites and impaired renal sodium excretion. C4M and PRO-C4 show gender-specific profiles with significantly lower levels in females compared to males. Females with higher C4M levels show higher mortality. By contrast, males with higher C4M levels show lower mortality. In multivariate Cox regression analysis, C4M is an independent predictor of survival in female patients. Conclusion: This study shows that markers of collagen type IV remodelling do not accumulate in severe renal dysfunction. Although collagen type IV degradation markers derive from the liver, portal venous C4M levels are relevant for survival. Moreover, it demonstrates that circulating C4M shows gender-specific profiles, which can independently predict survival in female patients with decompensated cirrhosis.

JTD Keywords: ACLF, Acute decompensation, Acute-on-chronic liver failure, Cirrhosis, Collagen type IV, Extracellular matrix remodelling, Gender, Liver, Portal hypertension, Transjugular intrahepatic portosystemic shunt


Miranda Coelho, Nuno, Gonzalez-Garcia, Cristina, Salmeron-Sanchez, Manuel, Altankov, George, (2011). Arrangement of type IV collagen on NH(2) and COOH functionalized surfaces Biotechnology and Bioengineering , 108, (12), 3009-3018

Apart from the paradigm that cell-biomaterials interaction depends on the adsorption of soluble adhesive proteins we anticipate that upon distinct conditions also other, less soluble ECM proteins such as collagens, associate with the biomaterials interface with consequences for cellular response that might be of significant bioengineering interest. Using atomic force microscopy (AFM) we seek to follow the nanoscale behavior of adsorbed type IV collagen (Col IV)-a unique multifunctional matrix protein involved in the organization of basement membranes (BMs) including vascular ones. We have previously shown that substratum wettability significantly affects Col IV adsorption pattern, and in turn alters endothelial cells interaction. Here we introduce two new model surfaces based on self-assembled monolayers (SAMs), a positively charged - NH(2), and negatively charged -COOH surface, to learn more about their particular effect on Col IV behavior. AFM studies revealed distinct pattern of Col IV assembly onto the two SAMs resembling different aspects of network-like structure or aggregates (suggesting altered protein conformation). Moreover, the amount of adsorbed FITC-labeled Col IV was quantified and showed about twice more protein on NH(2) substrata. Human umbilical vein endothelial cells attached less efficiently to Col IV adsorbed on negatively charged COOH surface judged by altered cell spreading, focal adhesions formation, and actin cytoskeleton development. Immunofluorescence studies also revealed better Col IV recognition by both alpha(1) and alpha(2) integrins on positively charged NH(2) substrata resulting in higher phosphorylated focal adhesion kinase recruitment in the focal adhesion complexes. On COOH surface, no integrin clustering was observed. Taken altogether these results, point to the possibility that combined NH(2) and Col IV functionalization may support endothelization of cardiovascular implants.

JTD Keywords: Collagen type IV, SAMs, AFM, Surface-induced protein assembly, Endothelial cells, Vascular grafts


Coelho, N. M., Gonzalez-Garcia, C., Planell, J. A., Salmeron-Sanchez, M., Altankov, G., (2010). Different assembly of type iv collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction European Cells & Materials , 19, 262-272

Considering the structural role of type IV collagen (Col IV) in the assembly of the basement membrane (BM) and the perspective of mimicking its organization for vascular tissue engineering purposes, we studied the adsorption pattern of this protein on model hydrophilic (clean glass) and hydrophobic trichloro(octadecyl) silane (ODS) surfaces known to strongly affect the behavior of other matrix proteins. The amount of fluorescently labeled Col IV was quantified showing saturation of the surface for concentration of the adsorbing solution of about 50 mu g/ml, but with approximately twice more adsorbed protein on ODS. AFM studies revealed a fine-nearly single molecular size-network arrangement of Col IV on hydrophilic glass, which turns into a prominent and growing polygonal network consisting of molecular aggregates on hydrophobic ODS. The protein layer forms within minutes in a concentration-dependent manner. We further found that human umbilical vein endothelial cells (HUVEC) attach less efficiently to the aggregated Col IV (on ODS), as judged by the significantly altered cell spreading, focal adhesions formation and the development of actin cytoskeleton. Conversely, the immunofluorescence studies for integrins revealed that the fine Col IV network formed on hydrophilic substrata is better recognized by the cells via both alpha 1 and alpha 2 heterodimers which support cellular interaction, apart from these on hydrophobic ODS where almost no clustering of integrins was observed.

JTD Keywords: Collagen type IV, Adsorption, Assembly, Hydrophilic, Hydrophobic, Surfaces