DONATE

Publications

by Keyword: Electrochemical supercapacitors

Babeli, I, Ruano, G, Puiggalí-Jou, A, Ginebra, MP, Alemán, C, Garcia-Torres, J, (2021). Self-Healable and Eco-Friendly Hydrogels for Flexible Supercapacitors Advanced Sustainable Systems 5, 2000273

© 2021 Wiley-VCH GmbH One limitation of wearable electronics, and at the same time a challenge, is the lack of energy storage devices with multiple functionalities produced using clean and environmental-friendly strategies. Here, a multifunctional conductive hydrogel containing poly(3,4-ethylenedioxythiophene) (PEDOT) and alginate is fabricated, to be used as electrodes in supercapacitors, by applying water-mediated self-assembly and polymerization processes at room temperature. The interpenetration of both polymers allows the combination of flexibility and self-healing properties within the same hydrogel together with the intrinsic biocompatibility and sustainability of such materials. Initially, PEDOT:polystyrene sulfonate and alginate aqueous solutions are mixed in two different proportions (1:1 and 1:3) and ionically crosslinked with CaCl2. Subsequently, re-interpenetration of poly(hydroxymethyl-3,4-ethylenedioxythiophene) by anodic polymerization in CaCl2 aqueous solution is achieved. Re-interpenetrated 1:3 PEDOT/alginate hydrogels show excellent capacitance values (35 mF cm−2) and good capacitance retention. In addition, the electrochemical properties are not significantly changed after many cutting/self-healing cycles as observed by cyclic voltammetry. Therefore, this sustainably produced hydrogel shows promising properties for use in wearable energy storage devices.

JTD Keywords: flexibility, pedot:pss-alginate hydrogels, self-healing, sustainability, Electrochemical supercapacitors, Flexibility, Pedot:pss-alginate hydrogels, Self-healing, Sustainability